|
|
Electron impact excitation of helium atom |
Han Xiao-Ying (韩小英)a, Zeng De-Ling (曾德灵)b, Gao Xiang (高翔)c, Li Jia-Ming (李家明)b d e |
a Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
b Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
c Beijing Computational Science Research Center, Beijing 100084, China;
d Department of Physics and Center for Atomic and Molecular Nanosciences, Tsinghua University, Beijing 100084, China;
e Collaborative Innovation Center of Quantum Matter, Beijing 100084, China |
|
|
Abstract A method to deal with the electron impact excitation cross sections of an atom from low to high incident energies are presented. This method combines the partial wave method and the first Born approximation (FBA), i.e., replacing the several lowest partial wave cross sections of the total cross sections within FBA by the corresponding exact partial wave cross sections. A new set of codes are developed to calculate the FBA partial wave cross sections. Using this method, the convergent e–He collision cross sections of optical-forbidden and optical-allowed transitions at low to high incident energies are obtained. The calculation results demonstrate the validity and efficiency of the method.
|
Received: 03 March 2015
Revised: 13 April 2015
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
34.80.-i
|
(Electron and positron scattering)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921501 and 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11274035, 11275029, 11328401, 11371218, 11474031, 11474032, and 11474034), and the Foundation of Development of Science and Technology of Chinese Academy of Engineering Physics (Grant Nos. 2013A0102005 and 2014A0102005). |
Corresponding Authors:
Han Xiao-Ying
E-mail: han_xiaoying@iapcm.ac.cn
|
Cite this article:
Han Xiao-Ying (韩小英), Zeng De-Ling (曾德灵), Gao Xiang (高翔), Li Jia-Ming (李家明) Electron impact excitation of helium atom 2015 Chin. Phys. B 24 083103
|
[1] |
Christophorou L G 1971 Atomic and Molecular Radiation Physics (New York: John Wiley and Sons Ltd) p. 9
|
[2] |
Lindl J D, Amendt P, Berger R L, et al. 2004 Phys. Plasmas 11 339
|
[3] |
Dalgarno A 1979 Adv. At. Mol. Phys. 15 37
|
[4] |
Kallman T R and Palmeri P 2007 Rev. Mod. Phys. 79 79
|
[5] |
Beiersdorfer P 2003 Ann. Rev. Astron. Astrophys. 41 343
|
[6] |
Smits D P 1996 Mon. Not. R. Astron. Soc. 278 683
|
[7] |
Benjamin R A, Skillman E D and Smits D P 1999 Ap. J. 514 307
|
[8] |
Kingdon Kunze H J and Johnston III W D 1971 Phys. Rev. A 3 1384
|
[9] |
Bray I, Burgess A, Fursa D V and Tully J A 2000 Astron. Astrophys. Suppl. Ser. 146 481
|
[10] |
Kingdon J and Ferland G J 1995 Ap. J. 442 714
|
[11] |
Bederson B and Kieffer L J 1971 Rev. Mod. Phys. 43 601
|
[12] |
Heddle D W O and Gallagher J W 1989 Rev. Mod. Phys. 61 221
|
[13] |
Lin C C and Anderson L W 1992 Adv. At. Mol. Phys. 29 1
|
[14] |
Nakazaki S 1993 Adv. At. Mol. Phys. 30 1
|
[15] |
Berrington K A, Burke P G and Sinfailam A L 1975 J. Phys. B: At. Mol. Opt. Phys. 8 1459
|
[16] |
Berrington K A, Burke P G, Freitas L C G and Kingston A E 1985 J. Phys. B: At. Mol. Opt. Phys. 18 4135
|
[17] |
Berrington K A and Kingston A E 1987 J. Phys. B: At. Mol. Opt. Phys. 20 6631
|
[18] |
Sawey P M J, Berrington K A, Burke P G and Kingston A E 1990 J. Phys. B: At. Mol. Opt. Phys. 23 4321
|
[19] |
Sawey P M J and Berrington K A 1993 At. Data Nucl. Data Tables 55 81
|
[20] |
Zeng D L, Gao X, Han X Y and Li J M 2015 Phys. Rev. A 91 022707
|
[21] |
Fursa D V and Bray I 1995 Phys. Rev. A 52 1279
|
[22] |
Fursa D V and Bray I 1997 J. Phys. B: At. Mol. Opt. Phys. 30 757
|
[23] |
de heer F J, Hoekstra R, Kingston A E and Summers H P 1992 Nucl. Fusion Suppl. 3 19
|
[24] |
Burke P G, Hibbert A and Robb W D 1971 J. Phys. B: At. Mol. Opt. Phys. 4 153
|
[25] |
Berrington K A, Burke P G, Chang J J, Chivers A T, Robb W D and Taylor K T 1974 Comput. Phys. Commun. 8 149
|
[26] |
Berrington K A, Burke P G, Dourneuf M L, Robb W D, Taylor K T and Voky L 1984 Comput. Phys. Commun. 35 C-475
|
[27] |
Berrington K A, Burke P G, Butler K, Seaton M J, Storey P J, Taylor K T and Yan Y 1987 J. Phys. B: At. Mol. Opt. Phys. 20 6379
|
[28] |
Berrington K A and Kingston A E 1987 J. Phys. B: At. Mol. Opt. Phys. 20 6631
|
[29] |
Fano U and Lee C M 1973 Phys. Rev. Lett. 31 1573
|
[30] |
Voky L, Saraph H E, Eissner W, Liu Z W and Kelly H P 1992 Phys. Rev. A 46 3945
|
[31] |
Berrington K A, Eissner W B and Norrington P H 1995 Comput. Phys. Commun. 92 290
|
[32] |
Han X Y and Li J M 2006 Phys. Rev. A 74 062711
|
[33] |
Han X Y, Li Y M, Zhang H, Yan J, Li J M and Voky L 2008 Phys. Rev. A 78 052702
|
[34] |
Messiah A, 1973 Quantum Mechanics (Amsterdam: North-Holland) pp. 312–318
|
[35] |
Burke V M and Noble C J 1995 Comput. Phys. Commun. 85 471
|
[36] |
Bethe H 1930 Ann. Phys. 5 325
|
[37] |
Bethe H 1932 Z. Phys. 76 293
|
[38] |
Inokuti M 1971 Rev. Mod. Phys. 43 297
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|