Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 040203    DOI: 10.1088/1674-1056/24/4/040203
GENERAL Prev   Next  

Spatial snowdrift game in heterogeneous agent systems with co-evolutionary strategies and updating rules

Xia Hai-Jiang (夏海江), Li Ping-Ping (李萍萍), Ke Jian-Hong (柯见洪), Lin Zhen-Quan (林振权)
College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
Abstract  We propose an evolutionary snowdrift game model for heterogeneous systems with two types of agents, in which the inner-directed agents adopt the memory-based updating rule while the copycat-like ones take the unconditional imitation rule; moreover, each agent can change his type to adopt another updating rule once the number he sequentially loses the game at is beyond his upper limit of tolerance. The cooperative behaviors of such heterogeneous systems are then investigated by Monte Carlo simulations. The numerical results show the equilibrium cooperation frequency and composition as functions of the cost-to-benefit ratio r are both of plateau structures with discontinuous steplike jumps, and the number of plateaux varies non-monotonically with the upper limit of tolerance vT as well as the initial composition of agents fa0. Besides, the quantities of the cooperation frequency and composition are dependent crucially on the system parameters including vT, fa0, and r. One intriguing observation is that when the upper limit of tolerance is small, the cooperation frequency will be abnormally enhanced with the increase of the cost-to-benefit ratio in the range of 0<r<1/4. We then probe into the relative cooperation frequencies of either type of agents, which are also of plateau structures dependent on the system parameters. Our results may be helpful to understand the cooperative behaviors of heterogenous agent systems.
Keywords:  cooperative behavior      evolutionary snowdrift game      heterogeneous agent system  
Received:  05 July 2014      Revised:  15 November 2014      Accepted manuscript online: 
PACS:  02.50.Le (Decision theory and game theory)  
  87.23.Kg (Dynamics of evolution)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175131 and 10875086).
Corresponding Authors:  Ke Jian-Hong     E-mail:  kejianhong@ymail.com

Cite this article: 

Xia Hai-Jiang (夏海江), Li Ping-Ping (李萍萍), Ke Jian-Hong (柯见洪), Lin Zhen-Quan (林振权) Spatial snowdrift game in heterogeneous agent systems with co-evolutionary strategies and updating rules 2015 Chin. Phys. B 24 040203

[1] Smith J M and Price G 1973 Nature 246 15
[2] Axelrod R and Hamilton W D 1981 Science 211 1390
[3] Axelrod R 1984 The Evolution of Cooperation (New York: Basic Book)
[4] Dugatkin L A 1997 Cooperation Among Animals (Oxford: Oxford University Press)
[5] Fehr E and Fischbacher U 2003 Nature 425 785
[6] Nowak M A 2006 Evolutionary Dynamics (Cambridge: Harvard University Press)
[7] Weibull J W 1995 Evolutionary Game Theory (Cambridge: MIT Press)
[8] Milinski M, Lüthi J H, Eggler R and Parker G A 1997 Proc. R. Soc. Lond. B 264 831
[9] Turner P E and Chao L 1999 Nature 398 441
[10] Hao D, Rong Z H and Zhou T 2014 Chin. Phys. B 23 078905
[11] Zhao L, Zhou X and Liang Z and Wu J R 2012 Chin. Phys. B 21 018701
[12] Rapoport A and Chammah A M 1970 Prisoner's Dilemma (Ann Arbor: University of Michigan Press)
[13] Hauert C and Doebeli M 2004 Nature 428 643
[14] Doebeli M and Hauert C 2005 Ecol. Lett. 8 748
[15] Nowak M A and May R M 1992 Nature 359 826
[16] Santos F C, Pacheco J M and Lenaerts T 2006 Proc. Natl. Acad. Sci. USA 103 3490
[17] Pacheco J M, Traulsen A and Nowak M A 2006 Phys. Rev. Lett. 97 258103
[18] Fu F, Hauert C, Nowak M A and Wang L 2008 Phys. Rev. E 78 026117
[19] Gräser O, Xu C and Hui P M 2009 Europhys. Lett. 87 38003
[20] Wu B, Zhou D, Fu F, Luo Q, Wang L and Traulsen A 2010 PLoS One 5 e11187
[21] Lee S, Holme P and Wu Z X 2011 Phys. Rev. Lett. 106 028702
[22] Wang X P, Jiang L L and Wang B H 2012 Chin. Phys. B 21 070210
[23] Fang X S, Zhu P, Liu R R, Liu E Y and Wei G Y 2012 Chin. Phys. B 21 108702
[24] Szabó G and Töke C 1998 Phys. Rev. E 58 69
[25] Szabó G and Fáth G 2007 Phys. Rep. 446 97
[26] Schlag K H 1998 J. Econ. Theory 78 130
[27] Helbing D 1992 Physica A 181 29
[28] Abramson G and Kuperman M 2001 Phys. Rev. E 63 030901
[29] Zimmermann M G, Eguíluz V M and San Miguel M 2004 Phys. Rev. E 69 065102
[30] Wang W X, Ren J, Chen G R and Wang B H 2006 Phys. Rev. E 74 056113
[31] Tomassini M, Luthi L and Giacobini M 2006 Phys. Rev. E 73 016132
[32] Sysi-Aho M, Saramäki J, Kertész J and Kaski K 2005 Eur. Phys. J. B 44 129
[33] Roca C P, Cuesta J A and Sánchez A 2009 Phys. Life Rev. 6 208
[34] Challet D and Zhang Y C 1997 Physica A 246 407
[35] Huang Z G, Wu Z X, Guan J Y and Wang Y H 2006 Chin. Phys. Lett. 23 3119
[36] Qin S M, Chen Y, Zhao X Y and Shi J 2008 Phys. Rev. E 78 041129
[37] Ni Y C, Xu C, Hui P M and Johnson N F 2009 Physica A 388 4856
[38] Liu Y K, Li Z, Chen X J and Wang L 2010 Physica A 389 2390
[39] Nowak M A and Sigmund K 2004 Science 303 793
[40] Fu F, Liu L H and Wang L 2007 Eur. Phys. J. B 56 367
[41] Li P P, Ke J, Lin Z and Hui P M 2012 Phys. Rev. E 85 021111
[42] Szabó G, Szolnoki A and Vukov J 2009 Europhys. Lett. 87 18007
[43] Moyano L G and Sánchez A 2009 J. Theor. Biol. 259 84
[44] Cardillo A, Gómez-Gardeñes J, Vilone D and Sánchez A 2010 New J. Phys. 12 103034
[45] Xia C Y, Wang L, Wang J and Wang J S 2012 Commun. Theor. Phys. 58 343
[46] Li P P, Ke J, Jiang L L, Yuan X Z and Lin Z 2013 Eur. Phys. J. B 86 168
[47] Newman M E J and Barkema G T 1999 Monte Carlo Methods in Statistical Physics (Oxford: Oxford University Press)
[1] Mechanochemical model for myosin II dimer that can explain the spontaneous oscillatory contraction of muscle
Wei Sun(孙伟), Xiao-Yang Zhao(赵晓阳), Jun-Ping Zhang(张俊萍), Tala(塔拉), Wei-Sheng Guo(郭维生). Chin. Phys. B, 2018, 27(11): 118702.
No Suggested Reading articles found!