Special Issue:
TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
|
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research |
Prev
Next
|
|
|
Real-space observation of individual skyrmions in helimagnetic nanostripes |
Jin Chi-Ming (金驰名)a b c, Du Hai-Feng (杜海峰)a b |
a High Magnetic Field Laboratory, Chinese Academy of Sciences (CAS), Hefei 230031, China;
b Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
c School of Physical Science, University of Science and Technology of China, Hefei 230031, China |
|
|
Abstract Controllable formation and manipulation of domain walls in one-dimensional (1D) nanostripes underpins a promising type of emergent spintronic device. Magnetic skyrmion is topologically stable whirlpool-like spin texture and is expected to replace familiar domain wall phenomena to build such devices, owing to its prominent features including small size, topological stability and the small critical current required to move it. It is thus essential to understand skyrmions' properties in such a nanostructured element. In this paper, we mainly give fundamental insight into this issue. Experimental achievements in the formation and stability of individual skyrmions in the nanostripe are outlined in detail.
|
Received: 27 September 2015
Revised: 20 October 2015
Accepted manuscript online:
|
PACS:
|
85.70.Ay
|
(Magnetic device characterization, design, and modeling)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474290) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015267). |
Corresponding Authors:
Du Hai-Feng
E-mail: duhf@hmfl.ac.cn
|
Cite this article:
Jin Chi-Ming (金驰名), Du Hai-Feng (杜海峰) Real-space observation of individual skyrmions in helimagnetic nanostripes 2015 Chin. Phys. B 24 128501
|
[1] |
Azzerboni B, Asti G, Pareti L and Ghidini M 2008 Magnetic Nanostructures in Modern Technology (Dordrecht: Springer) pp. 237-306
|
[2] |
Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915
|
[3] |
Yu X Z, Onose Y, Kanazawa N, Park J H,Han J H, Matsui Y,Nagaosa N and Tokura Y 2010 Nature 465 901
|
[4] |
Jonietz F, Mülbauer S, Pfleiderer C, et al. 2010 Science 330 1648
|
[5] |
Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
|
[6] |
Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Böni P 2009 Phys. Rev. Lett. 102 186602
|
[7] |
Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988
|
[8] |
Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
|
[9] |
Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742
|
[10] |
Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
|
[11] |
Shibata K, Yu X Z,Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y and Tokura Y 2013 Nat. Nanotechnol. 8 723
|
[12] |
Brataas A, Kent A D and Ohno H 2012 Nat. Mater. 11 372 and reference therein
|
[13] |
Rößler U K, Leonov A A and Bogdanov A N 2011 J. Phys.: Conf. Ser. 303 012105
|
[14] |
Rößler U K, Bogdanov A A and Pfleiderer C 2006 Nature 442 797
|
[15] |
Yu X Z, DeGrave J P, Hara Y, Hara T, Jin S and Tokura Y 2013 Nano Lett. 13 3755
|
[16] |
Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
|
[17] |
Uchida M, Onose Y, Matsui Y and Tokura Y 2011 Science 311 359
|
[18] |
Chapman J N 1984 J. Phys. D: Appl. Phys. 17 623
|
[19] |
Williams D B and Carter C B 2009 Transmission electron microscopy: A textbook for materials science (New York: Springer)
|
[20] |
Chapman J N and Scheinfein M R 1999 J. Magn. Magn. Mater. 200 729
|
[21] |
Mayer J, Giannuzzi L A, Kamino T and Michael J 2007 MRS Bull. 32 400
|
[22] |
Higgins J M, Ding R H, DeGrave J P and Jin S 2010 Nano Lett. 10 1605
|
[23] |
Du H F, Liang D, Jin C M, Kong L Y,Stolt M J, Ning W, Yang J Y, Xing Y, Wang J, Che R C, Zang J D, Jin S, Zhang Y H and Tian M L 2015 Nat. Commun. 6 7637
|
[24] |
See details in the internet: http://www.fei.com/products/dualbeam/helios-nanolab
|
[25] |
Beaulieu D C 2005 “Electron beam chemical vapor deposition of platinum and carbon”, Ph. D. Disertation
|
[26] |
Du H F, Che R C, Kong L Y, Zhao X B, Jin C M, Wang C, Yang J Y, Ning W, Li R W, Jin C Q, Chen X H, Zang J D, Zhang Y Hand Tian M L 2015 Nat. Commun. 6 8504
|
[27] |
Clarke D, Tretiakov O A and Tchernyshyov O 2007 Phys. Rev. B 75 174433
|
[28] |
Ezawa M 2011 Phys. Rev. B 83 100408
|
[29] |
Du H F, Ning W, Tian M L and Zhang Y H 2013 Phys. Rev. B 87 014401
|
[30] |
Du H F, Ning W, Tian M L and Zhang Y H 2013 Europhys. Lett. 101 37001
|
[31] |
Meynell S A, Wilson M N, Fritzsche H, Bogdanov A N and Monchesky T L 2014 Phys. Rev. B 90 014406
|
[32] |
Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|