Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 093203    DOI: 10.1088/1674-1056/23/9/093203
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Atomic structure calculations for F-like tungsten

Sunny Aggarwal
Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
Abstract  Energy levels, wavefunction compositions and lifetimes have been computed for all levels of 1s22s22p5, 1s22s2p6, 1s22s22p43s, 1s22s22p43p, and 1s22s22p43d configurations in highly charged F-like tungsten ion. The multiconfigurational Dirac-Fock method (MCDF) is adopted to generate the wavefunctions. We have also presented the transition wavelengths, oscillator strengths, transition probabilities, and line strengths for the electric dipole (E1) and magnetic quadrupole (M2) transition from the 1s22s22p5 ground configuration. We have performed parallel calculations with the flexible atomic code (FAC) for comparing the atomic data. The reliability of present data is assessed by comparison with other theoretical and experimental data available in the literature. Good agreement is found between our results and those obtained using different approaches confirm the quality of our results. Additionally, we have predicted some new atomic data for F-like W that were not available so far and may be important for plasma diagnostic analysis in fusion plasma.
Keywords:  atomic data      transition probability  
Received:  27 January 2014      Revised:  21 March 2014      Accepted manuscript online: 
PACS:  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
Corresponding Authors:  Sunny Aggarwal     E-mail:  sunny.kmc87@gmail.com

Cite this article: 

Sunny Aggarwal Atomic structure calculations for F-like tungsten 2014 Chin. Phys. B 23 093203

[1] Zigler A, Zmora H, Spector N, Klapisch M, Schwob J L and Bar-Shalom A 1980 J. Opt. Soc. Am. 70 129
[2] Mandelbaum P, Klapisch M, Bar-Shalom A, Schwob J L and Zigler A 1983 Phys. Scr. 27 39
[3] Tragin N, Geindre J P, Monier P, Gauthier J C, Chenaispopovics C, Wyart J F and Bauche-Arnoult C 1988 Phys. Scr. 37 72
[4] Neu R, Fournier K B, Schögl D and Rice J 1997 J. Phys. At. Mol. Opt. Phys. 30 5057
[5] Pütterich T, Neu R, Biedermann C, Radtke R and the ASDEX upgrade team 2005 J. Phys. At. Mol. Opt. Phys. 38 307
[6] Aggarwal S, Jha A K S and Mohan M 2013 Can. J. Phys. 91 394
[7] Mohan M, Aggarwal S and Singh N 2014 Can. J. Phys. 92 1
[8] Podpaly Y, Clementson J, Beiersdorfer P, Williamson J, Brown G V and Gu M F 2009 Phys. Rev. A 80 052504
[9] Clementson J, Beiersdorfer P, Brown G V, Gu M F, Lundberg H, Podpaly Y and Trabert E 2011 Can. J. Phys. 89 571
[10] Feldman U, Seely J F, Landi E and Ralchenko Y 2008 Nucl. Fusion 48 045004
[11] Pütterich T, Neu R, Dux R, Whiteford A D, Mullane M G O and the ASDEX upgrade team 2008 Plasma Phys. Control Fusion 50 085016
[12] Beiersdorfer P, Lepson J K, Schneider M B and Bode M P 2012 Phys. Rev. A 86 012509
[13] Kramida A E and Reader J 2006 At. Data Nucl. Data Tables 92 457
[14] Kramida A E and Shirai T 2009 At. Data Nucl. Data Tables 95 305
[15] Kramida A E 2011 Can. J. Phys. 89 551
[16] http://www.nist.gov/pml/data/asd.cfm
[17] Grant I P, Mckenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
[18] Dyall K G, Grant I P, Johnson C T and Plummer E P 1989 Comput. Phys. Commun. 55 425
[19] Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249
[20] J'onsson P, He X, Fischer C F and Grant I P 2007 Comput. Phys. Commun. 177 597
[21] Norrington P H 2009 http://www.am.qub.ac.uk/DARC/
[22] Quinet P 2012 J. Phys. B 45 025003
[23] Aggarwal S, Singh J and Mohan M 2013 Chin. Phys. B 22 033201
[24] Singh A K, Aggarwal S and Mohan M 2013 Phys. Scr. 88 035301
[25] Aggarwal S, Singh J and Mohan M 2013 At. Data Nucl. Data Tables 99 704
[26] Gu M F 2008 Can. J. Phys. 86 675
[1] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[2] Nodes and layers PageRank centrality for multilayer networks
Lai-Shui Lv(吕来水), Kun Zhang(张琨), Ting Zhang(张婷), Meng-Yue Ma(麻孟越). Chin. Phys. B, 2019, 28(2): 020501.
[3] Relativistic atomic data for W XLVII
Sunny Aggarwal, A. K. S. Jha, Indu Khatri, Narendra Singh, Man Mohan. Chin. Phys. B, 2015, 24(5): 053201.
[4] Two-electron quantum ring in short pulses
Poonam Silotia, Rakesh Kumar Meena, Vinod Prasad. Chin. Phys. B, 2015, 24(2): 020303.
[5] Extreme ultraviolet and x-ray transition wavelengths in Rb XXIV
Indu Khatri, Arun Goyal, Sunny Aggarwal, A. K. Singh, Man Mohan. Chin. Phys. B, 2015, 24(10): 103202.
[6] Stark spectra of Rydberg states in atomic cesium in the vicinity of n=18
Dong Hui-Jie (董慧杰), Wang Ting (王婷), Li Chang-Yong (李昌勇), Zhao Jian-Ming (赵建明), Zhang Lin-Jie (张临杰). Chin. Phys. B, 2013, 22(7): 073201.
[7] AJAC: Atomic data calculation tool in Python
Amani Tahat, Jordi Marti, Kaher Tahat, Ali Khwaldeh. Chin. Phys. B, 2013, 22(4): 048901.
[8] New atomic data for Kr XXXV useful in fusion plasma
Sunny Aggarwal, Jagjit Singh, Man Mohan. Chin. Phys. B, 2013, 22(3): 033201.
[9] Transition probabilities and lifetimes of the low-lying levels of Fe XIV
Fan Jian-Zhong(范建中), Wang Qing-Min(汪青敏), Chang Zhi-Wei(常志伟), and Dong Chen-Zhong(董晨钟) . Chin. Phys. B, 2012, 21(6): 063102.
[10] Electric-dipole allowed (E1) and forbidden (E2, M1 and M2) transition probabilities of 4f for N+
Shen Xiao-Zhi(申晓志), Yuan Ping(袁萍), and Liu Juan(刘娟). Chin. Phys. B, 2010, 19(5): 053101.
[11] Effect of Landau-Zener tunneling by the varying sweeping rate of external field
Wang Jin-Bao(王锦宝), Tong Guo-Ping(童国平), and Li Sheng(李盛). Chin. Phys. B, 2010, 19(3): 033201.
[12] Transition probabilities for NII 2p4f--2p3d and 2s2p23d--2s2p23p obtained by a semiclassical method
Shen Xiao-Zhi(申晓志), Yuan Ping(袁萍), Zhang Hua-Ming(张华明), and Wang Jie(王杰). Chin. Phys. B, 2007, 16(10): 2934-2937.
[13] Influence of relaxation effects on probabilities of the 2s2p5S2-2s22p2 3P1,2 intercombination transitions in NII
Yuan Ping (袁萍), Liu Xin-Sheng (刘欣生), Xie Lu-You (颉录有), Zhang Yi-Jun (张义军), Dong Chen-Zhong (董晨钟). Chin. Phys. B, 2003, 12(3): 271-274.
[14] MULTIPHOTON JAYNES-CUMMINGS MODEL SOLVED VIA SUPERSYMMETRIC UNITARY TRANSFORMATION
Lu Huai-xin (逯怀新), Wang Xiao-qin (王晓芹). Chin. Phys. B, 2000, 9(8): 568-571.
No Suggested Reading articles found!