Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050508    DOI: 10.1088/1674-1056/23/5/050508
GENERAL Prev   Next  

Linear and nonlinear generalized consensuses of multi-agent systems

Guo Liu-Xiao (过榴晓), Hu Man-Feng (胡满峰), Hu Ai-Hua (胡爱花), Xu Zhen-Yuan (徐振源)
School of Science, Jiangnan University, Wuxi 214122, China
Abstract  Consensus in directed networks of multiple agents, as an important topic, has become an active research subject. Over the past several years, some types of consensus problems have been studied. In this paper, we propose a novel type of consensus, the generalized consensus (GC), which includes the traditional consensus, the anti-consensus, and the cluster consensus as its special cases. Based on the Lyapunov's direct method and the graph theory, a simple control algorithm is designed to achieve the generalized consensus in a network of agents. Numerical simulations of linear and nonlinear GC are used to verify the effectiveness of the theoretical analysis.
Keywords:  generalized consensus      multi-agent system      directed network      connection topology  
Received:  09 September 2013      Revised:  25 October 2013      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11002061 and 11202084) and the Fundamental Research Funds for the Central Universities, China (Grant No. JUSRP51317B).
Corresponding Authors:  Guo Liu-Xiao     E-mail:  guo_liuxiao@126.com
About author:  05.45.Xt

Cite this article: 

Guo Liu-Xiao (过榴晓), Hu Man-Feng (胡满峰), Hu Ai-Hua (胡爱花), Xu Zhen-Yuan (徐振源) Linear and nonlinear generalized consensuses of multi-agent systems 2014 Chin. Phys. B 23 050508

[1] Beard R W, Lawton J and Hadaegh F Y 2001 IEEE Transactions on Control Systems Technology 9 777
[2] Olfati-Saber R 2006 IEEE Transactions on Automatic Control 51 401
[3] Tanner H G, Jadbabaie A and Pappas G J 2007 IEEE Transactions on Automatic Control 52 863
[4] Ren W 2007 System and Control Letters 56 474
[5] Hu J and Hong Y 2007 Physica A 374 853
[6] Hu J andLin Y S 2010 IET Control Theory and Applications 4 109
[7] Hong Y G, Hu J P and Gao L X 2006 Automatica 42 1177
[8] Sarlette A and Sepulchre R 2009 Decision and Control, Proceedings of the 48th IEEE Conference 6438
[9] Sarlette A and Sepulchre R 2009 SIAM J. Control Optim. 48 56
[10] Vicsek T, Czirok A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[11] Aldana M, Dossetti V, Huepe C, Kenkre V M and Larralde H 2007 Phys. Rev. Lett. 98 095702
[12] Lu X Q, Austin F and Chen S H 2010 Chin. Phys. Lett. 27 050503
[13] Lu X Q, Austin F and Chen S H 2010 Chin. Phys. B 19 120506
[14] Chen Y, Lü J H, Han F L and Yu X H 2011 Systems and Control Letters 60 517
[15] Wu Z Y and Fu X C 2012 Communications in Nonlinear Science and Numerical Simulation 17 1628
[16] Guo L X and Xu Z Y 2008 Chaos 18 033134
[17] Yuan Z L, Xu Z Y and Guo L X 2011 Chin. Phys. B 20 070503
[18] Chen L, Shi Y D and Wang D S 2010 Chin. Phys. B 19 100503
[19] Abdurahman K, Wang X Y and Zhao Y Z 2011 Chin. Phys. Lett. 28 090503
[20] Jing J Y and Min L Q 2009 Chin. Phys. Lett. 26 28702
[21] Yuan Z L, Xu Z Y and Guo L X 2012 Communications in Nonlinear Science and Numerical Simulation 17 992
[22] Guo L X, Xu Z Y and Hu A H 2011 Chin. Phys. B 20 010507
[23] Hu A H, Xu Z Y and Guo L X 2010 Chaos 20 013112
[24] Guan S G, Wang X G, Gong X F, Li K and Lai C H 2009 Chaos 19 013130
[25] Wen G H, Duan Z S, Yu W W and Chen G R 2012 Int. J. Robust. Nonlinear Control 10 2779
[26] Horn R A and Johnson C R 1985 Matrix Analysis (Cambridge: Cambridge University Press)
[27] Brualdi R A and Ryser H J 1991 Combinatorial Matrix Theory (Cambridge: Cambridge University Press)
[28] Tarjan R 1972 SIAM Journal on Computing 1 146
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[3] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[4] Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks
Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓). Chin. Phys. B, 2019, 28(9): 090701.
[5] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[6] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[7] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[8] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[9] Distance-based formation tracking control of multi-agent systems with double-integrator dynamics
Zixing Wu(吴梓杏), Jinsheng Sun(孙金生), Ximing Wang(王希铭). Chin. Phys. B, 2018, 27(6): 060202.
[10] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[11] Generation of optimal persistent formations for heterogeneous multi-agent systems with a leader constraint
Guo-Qiang Wang(王国强), He Luo(罗贺), Xiao-Xuan Hu(胡笑旋). Chin. Phys. B, 2018, 27(2): 028901.
[12] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[13] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[14] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[15] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
No Suggested Reading articles found!