CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of interface roughness on photoluminescence full width at half maximum in GaN/AlGaN quantum wells |
Wang Wei-Ying (王维颖)a, Liu Gui-Peng (刘贵鹏)a, Jin Peng (金鹏)a, Mao De-Feng (毛德丰)a, Li Wei (李维)a, Wang Zhan-Guo (王占国)a, Tian Wu (田武)b, Chen Chang-Qing (陈长清)b |
a Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Low temperature photoluminescence (PL) measurements have been performed for a set of GaN/AlxGa1-xN quantum wells (QWs). The experimental results show that the optical full width at half maximum (FWHM) increases relatively rapidly with increasing Al composition in the AlxGa1-xN barrier, and increases only slightly with increasing GaN well width. A model considering the interface roughness is used to interpret the experimental results. In the model, the FWHM's broadening caused by the interface roughness is calculated based on the triangle potential well approximation. We find that the calculated results accord with the experimental results well.
|
Received: 13 March 2014
Revised: 05 May 2014
Accepted manuscript online:
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.66.Fd
|
(III-V semiconductors)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB619306) and the National High Technology Research and Development Program of China (Grant No. 2011AA03A101). |
Corresponding Authors:
Liu Gui-Peng
E-mail: liugp@semi.ac.cn
|
Cite this article:
Wang Wei-Ying (王维颖), Liu Gui-Peng (刘贵鹏), Jin Peng (金鹏), Mao De-Feng (毛德丰), Li Wei (李维), Wang Zhan-Guo (王占国), Tian Wu (田武), Chen Chang-Qing (陈长清) Effects of interface roughness on photoluminescence full width at half maximum in GaN/AlGaN quantum wells 2014 Chin. Phys. B 23 117803
|
[1] |
Taniyasua Y and Kasu M 2010 Appl. Phys. Lett. 96 221110
|
[2] |
Pernot C, Kim M, Fukahori S, Inazu T, Fujita T, Nagasawa Y, Hirano A, Ippommatsu M, Iwaya M, Kamiyama S, Akasaki I and Amano H 2010 Appl. Phys. Express 3 061004
|
[3] |
Nakamura S, Senoh M, S Nagahama, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umenoto H, Sano Mand Chocho K 1998 Appl. Phys. Lett. 72 1939.
|
[4] |
Li D B, Sun X J, Song H, Li Z M, Chen Y R, Jiang H and Miao G Q 2012 Adv. Mater. 24 845
|
[5] |
Li D B, Sun X J, Song H, Li Z M, Chen Y R, Miao G Q and Jiang H 2011 Appl. Phys. Lett. 98 011108
|
[6] |
Arulkumaran S, Sakai M, Egawa T, Ishikawa H, Jimbo T, Shibata T, Asai K, Sumiya S, Kuraoka Y, Tanaka M and Oda O 2002 Appl. Phys. Lett. 81 1131
|
[7] |
Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
|
[8] |
Kneissl M, Yang Z H, Teepe M, Knollenberg C, Schmidt O, Kiesel P, Johnson N M, Schujman S and Schowalter L J 2007 J. Appl. Phys. 101 123103
|
[9] |
Lee S N, Son J K, Paek H S, Sung Y J, Kim K S, Kim H K, Kim H, Sakong T, Park Y, Ha K H and Nam O H 2008 Appl. Phys. Lett. 93 091109
|
[10] |
Gurusinghe M N, Davidsson S K and Andersson T G 2005 Phys. Rev. B 72 045316
|
[11] |
Singh J, Bajaj K K and Chaudhuri S 1984 Appl. Phys. Lett. 44 805
|
[12] |
Singh J and Bajaj K K 1985 J. Appl. Phys. 57 5433
|
[13] |
Singh J and Bajaj K K 1986 Appl. Phys. Lett. 48 1077
|
[14] |
Bodin C, Andre R, Cibert J, Dang L S, Bellet D, Feuillet G and Jouneau P H 1995 Phys. Rev. B 51 13181
|
[15] |
Tahtamouni T M, Nepal N, Lin J Y, Jiang H X and Chow W W 2006 Appl. Phys. Lett. 89 131922
|
[16] |
Nepal N, Li J, Nakarmi M L, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 88 062103
|
[17] |
Srinivas V, Hryniewicz J, Chen Y J and Wood C C 1992 Phys. Rev. B 46 10193
|
[18] |
Damen T C, Shah J, Oberli D Y, Chemla D S, Cunningham J E and Kuo J M 1990 Phys. Rev. B 42 7434
|
[19] |
Ando T, Flower A B and Stern F 1982 Rev. Mod. Phys. 54 437
|
[20] |
Bernardini F and Fiorentini V 1998 Phys. Rev. B 57 R9427
|
[21] |
Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334
|
[22] |
Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
|
[23] |
Suzuki M, Uenoyama T and Yanase A 1995 Phys. Rev. B 52 8132
|
[24] |
Christen J and Bimberg D 1990 Phys. Rev. B 42 7213
|
[25] |
Shan W, Xie X C, Song J J and Goldenberg B 1995 Appl. Phys. Lett. 67 2512
|
[26] |
Chen G D, Smith M, Lin J Y, Jiang H X, Khan M A and Sun C J 1995 Appl. Phys. Lett. 67 1653
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|