Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110207    DOI: 10.1088/1674-1056/23/11/110207
GENERAL Prev   Next  

A meshless scheme for partial differential equations based on multiquadric trigonometric B-spline quasi-interpolation

Gao Wen-Wu (高文武)a b, Wang Zhi-Gang (王志刚)c
a School of Economics, Anhui University, Hefei 230411, China;
b Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433, China;
c School of Mathematics and Finance, Fuyang Teachers College, Fuyang 236037, China
Abstract  

Based on the multiquadric trigonometric B-spline quasi-interpolant, this paper proposes a meshless scheme for some partial differential equations whose solutions are periodic with respect to the spatial variable. This scheme takes into account the periodicity of the analytic solution by using derivatives of a periodic quasi-interpolant (multiquadric trigonometric B-spline quasi-interpolant) to approximate the spatial derivatives of the equations. Thus, it overcomes the difficulties of the previous schemes based on quasi-interpolation (requiring some additional boundary conditions and yielding unwanted high-order discontinuous points at the boundaries in the spatial domain). Moreover, the scheme also overcomes the difficulty of the meshless collocation methods (i.e., yielding a notorious ill-conditioned linear system of equations for large collocation points). The numerical examples that are presented at the end of the paper show that the scheme provides excellent approximations to the analytic solutions.

Keywords:  quasi-interpolation      meshless collocation      periodicity      divided difference  
Received:  08 April 2014      Revised:  14 May 2014      Accepted manuscript online: 
PACS:  02.60.-x (Numerical approximation and analysis)  
Fund: 

Project supported by the Shanghai Guidance of Science and Technology, China (Grant No. 12DZ2272800), the Natural Science Foundation of Education Department of Anhui Province, China (Grant No. KJ2013B203), and the Foundation of Introducing Leaders of Science and Technology of Anhui University, China (Grant No. J10117700057).

Corresponding Authors:  Wang Zhi-Gang     E-mail:  zgw_1122@163.com

Cite this article: 

Gao Wen-Wu (高文武), Wang Zhi-Gang (王志刚) A meshless scheme for partial differential equations based on multiquadric trigonometric B-spline quasi-interpolation 2014 Chin. Phys. B 23 110207

[1] Ciarlet P 1978 The Finite Element Method for Elliptic Problems (North-Holland)
[2] Chen L, Ma H P and Cheng Y M 2013 Chin. Phys. B 22 050202
[3] Wu X and Qiu Y F 2013 Chin. Phys. Lett. 30 080203
[4] Dehghan M 2006 Math. Comput. Simul. 71 16
[5] Liu G R and Gu Y T 2004 Eng. Anal. Bound. Elem. 28 475
[6] Liu D, Chen Q and Wang Y F 2013 J. Comput. Eng. 2013 432192
[7] Wang F, Lin G, Zheng B J and Hu Z Q 2013 Chin. Phys. B 22 060206
[8] Ge H X and Cheng R J 2014 Chin. Phys. B 23 040203
[9] Kansa E 1990 Comput. Math. Appl. 19 127
[10] Kansa E 1990 Comput. Math. Appl. 19 147
[11] Wu Z M 1992 Approx. Theory Appl. 8 1
[12] Fasshauer G 1991 Adv. Comput. Math. 11 139
[13] Fasshauer G 2007 Meshfree Approximation Methods with Matlab (Singapore: World Science Publishing Company)
[14] Hon Y C and Mao X Z 1998 Appl. Math. Comput. 95 37
[15] Chen R H and Wu Z M 2006 Numer. Meth. Part. Diff. Equ. 22 776
[16] Chen R H and Wu Z M 2007 Appl. Math. Comput. 186 1502
[17] Gao W W and Wu Z M 2012 J. Comput. Appl. Math. 236 3256
[18] Hon Y C 2002 Comput. Math. Appl. 43 513
[19] Zhu C G and R H Wang 2009 App. Math. Comput. 208 260
[20] Beatson R and Powell M 1992 Constr. Approx. 8 275
[21] Beatson R and Dyn N 1996 J. Approx. Theory 87 1
[22] Buhmann M 1988 IMA J. Numer. Anal. 8 365
[23] Wu Z M 1994 Acta. Math. Appl. Sin. 10 441
[24] Ma L M and Wu Z M 2009 Chin. Phys. B 18 3099
[25] Ma L M and Wu Z M 2010 Chin. Phys. B 19 010201
[26] Dehghan M and Shokri A 2007 Numer. Meth. Part. Diff. Equ. 24 1080
[27] Lyche T, Schumaker and Stanley S 1998 J. Approx. Theory 95 280
[28] Gao W W and Wu Z M 2014 J. Comput. Appl. Math. 271 20
[29] Wu Z M and Zhang S L 2013 Eng. Anal. Bound. Elem. 37 1052.
[30] Ma L M and Wu Z M 2010 Sci. Chin. Math. 53 985
[31] Wu Z M and Liu J P 2005 Adv. Comput. Math. 23 201
[1] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[2] Effect of temporal disorder on wave packet dynamics in one-dimensional kicked lattices
Yuting Wang(王雨婷), Yi Gao(高绎), Peiqing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120503.
[3] The dynamics of a symmetric coupling of three modified quadratic maps
Paulo C. Rech. Chin. Phys. B, 2013, 22(8): 080202.
[4] Design of electron wave filters in monolayer graphene with velocity modulations
Sun Li-Feng (孙立风), Dong Li-Min (董利民), Fang Chao (房超). Chin. Phys. B, 2013, 22(4): 047203.
[5] Identifying the temperature distribution in a parabolice quation with overspecified data using a multiquadric quasi-interpolation method
Ma Li-Min(马利敏) and Wu Zong-Min(吴宗敏). Chin. Phys. B, 2010, 19(1): 010201.
[6] A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation
Ma Li-Min(马利敏) and Wu Zong-Min(吴宗敏). Chin. Phys. B, 2009, 18(8): 3099-3103.
[7] Quantum phase transition and von Neumann entropy of quasiperiodic Hubbard chains
Zhu Xuan(朱璇) and Tong Pei-Qing(童培庆). Chin. Phys. B, 2008, 17(5): 1623-1628.
[8] Analysis of two-torus in a new four-dimensional autonomous system
Wu Wen-Juan(吴文娟), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉) . Chin. Phys. B, 2008, 17(1): 129-134.
[9] Transmission spectroscopy in a thin vapour layer and its derivative properties
Zhao Yan-Ting (赵延霆), Zhao Jian-Ming (赵建明), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2003, 12(4): 399-402.
No Suggested Reading articles found!