ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Nonlinear modes in rotating double well potential with parity-time symmetry |
Pang Wei (庞玮)a, Fu Shen-He (付神贺)b, Wu Jian-Xiong (吴剑雄)c, Li Yong-Yao (黎永耀)d, Mai Zhi-Jie (麦志杰)d |
a Department of Experiment Teaching, Guangdong University of Technology, Guangzhou 510006, China; b State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China; c Department of Electrical and Computer Engineering, University of Toronto, Toronto, M5S3G4, Canada; d Department of Applied Physics, South China Agricultural University, Guangzhou 510642, China |
|
|
Abstract We investigate the nonlinear modes in a rotating double well potential with PT symmetry. Focus on the existence and stability of the nonlinear PT modes in this system, we found that five types of PT modes can stably exist by given certain parameter settings. The multistable area between these modes are studied numerically and the bistable and tristable areas are delimited. With different input trial wavefunctions, five types of solitary wave modes are identified. We found that the rotating of the potential can significantly affect the power flow of the fundamental harmonic mode, whose effect is absent for the other modes.
|
Received: 25 November 2013
Revised: 06 January 2014
Accepted manuscript online:
|
PACS:
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
42.65.Wi
|
(Nonlinear waveguides)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104083 and 10934011). |
Corresponding Authors:
Mai Zhi-Jie
E-mail: zhijiemai@gmail.com
|
About author: 42.65.Tg; 42.65.Jx; 42.65.Wi |
Cite this article:
Pang Wei (庞玮), Fu Shen-He (付神贺), Wu Jian-Xiong (吴剑雄), Li Yong-Yao (黎永耀), Mai Zhi-Jie (麦志杰) Nonlinear modes in rotating double well potential with parity-time symmetry 2014 Chin. Phys. B 23 104214
|
|
| [1] | Bender C M 2007 Rep. Prog. Phys. 70 947
|
|
| [2] | Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
|
|
| [3] | Ruschhaupt A, Delgado F and Muga J G 2005 J. Phys. A: Math. Gen. 38 L171
|
|
| [4] | Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
|
|
| [5] | Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
|
|
| [6] | Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
|
|
| [7] | Bender N, Factor S, Bodyfelt J D, Ramezani H, Christodoulides D N, Ellis F M and Kottos T 2013 Phys. Rev. Lett. 110 234101
|
|
| [8] | Klaiman S, Günther U and Moiseyev N 2008 Phys. Rev. Lett. 101 080402
|
|
| [9] | Schindler J, Li A, Zheng M C, Ellis F M and Kottos T 2011 Phys. Rev. A 84 040101
|
|
| [10] | Bittner S, Dietz B, Günther U, Harney H L, Miski Oglu M, Richter A and Schäfer F 2012 Phys. Rev. Lett. 108 024101
|
|
| [11] | Li K and Kevrekidis P G 2011 Phys. Rev. E 83 066608
|
|
| [12] | Zezyulin D A and Konotop V V 2012 Phys. Rev. Lett. 108 213906
|
|
| [13] | He Y and Mihalache D 2012 Rom. Rep. Phys. 64 1243
|
|
| [14] | Akhmediev N and Ankiewicz A 2005 Dissipative Solitons (Berlin: Springer)
|
|
| [15] | Zhou K, Guo Z, Wang J and Liu S 2010 Opt. Lett. 35 2928
|
|
| [16] | Wang H and Wang J 2011 Opt. Express 19 4030
|
|
| [17] | Lu Z and Zhang Z M 2011 Opt. Express 19 11457
|
|
| [18] | Abdullaev F K, Kartashov Y V, Konotop V V and Zezyulin D A 2011 Phys. Rev. A 83 041805
|
|
| [19] | Zezyulin D A, Kartashov Y V and Konotop V V 2011 Europhys. Lett. 96 64003
|
|
| [20] | He Y, Zhu X, Mihalache D, Liu J and Chen Z 2012 Phys. Rev. A 85 013831
|
|
| [21] | Huang C, Li C and Dong L 2013 Opt. Express 21 3917
|
|
| [22] | Hu S M and Hu W 2012 Chin. Phys. B 21 024212
|
|
| [23] | Hu S M, Lu D Q, Ma X K, Guo Q and Hu W 2012 Europhys. Lett. 98 14006
|
|
| [24] | Li C Y, Huang C M, Liu H D and Dong L W 2012 Opt. Lett. 37 4543
|
|
| [25] | Hu S M and Hu W 2013 Chin. Phys. B 22 074201
|
|
| [26] | Konotop V V, Pelinovsky D E and Zezyulin D A 2012 Europhys. Lett. 100 56006
|
|
| [27] | Li C Y, Huang C M and Dong L W 2013 Chin. Phys. B 22 074209
|
|
| [28] | Fetter A E 2009 Rev. Mod. Phys. 81 647
|
|
| [29] | Engels P, Coddington I, Haljan P C, Schweikhard V and Cornell E A 2003 Phys. Rev. Lett. 90 170405
|
|
| [30] | Sakaguchi H and Malomed B A 2008 Phys. Rev. A 78 063606
|
|
| [31] | Tung S, Schweikhard V and Cornell E A 2006 Phys. Rev. Lett. 97 240402
|
|
| [32] | Kakarantzas G, Blanch A O, Birks T A, Russell P St J, Farr L, Couny F and Mangan B J 2003 Opt. Lett. 28 158
|
|
| [33] | Kartashov Y V, Malomed B A and Torner L 2007 Phys. Rev. A 75 061602
|
|
| [34] | Sakaguchi H and Malomed B A 2007 Phys. Rev. A 75 013609
|
|
| [35] | Sakaguchi H and Malomed B A 2009 Phys. Rev. A 79 043606
|
|
| [36] | Li Y Y, Pang W and Malomed B A 2012 Phys. Rev. A 86 023832
|
|
| [37] | Lederer F, Stegeman G I, Christodoulides D N, Assanto G, Segev M and Silberberg Y 2008 Phys. Rep. 463 1
|
|
| [38] | Li Y Y, Malomed B A, Feng M and Zhou J 2010 Phys. Rev. A 82 063813
|
|
| [39] | Pang W, Wu J, Yuan Z, Liu Y and Chen G 2011 J. Phys. Soc. Jpn. 80 113401
|
|
| [40] | Wu J, Feng M, Pang W, Fu S and Li Y 2011 J. Nonlinear Opt. Phys. 20 193
|
|
| [41] | Li H J, Dou J P, Yang J J and Huang G X 2013 Opt. Express 21 32053
|
|
| [42] | Smyrnakis J, Bargi S, Kavoulakis G M, Magiropoulos M, Karkkäinen K and Reimann S M 2009 Phys. Rev. Lett. 103 100404
|
|
| [43] | Hang C, Huang G X and Konotop V V 2013 Phys. Rev. Lett. 110 083604
|
|
| [44] | Saito H and Ueda M 2004 Phys. Rev. Lett. 93 220402
|
|
| [45] | Schwartz S, Cozzini M, Menotti C, Carusotto I, Bouyer P and Stringari S 2006 New J. Phys. 8 162
|
|
| [46] | Carretero-González R, Frantzeskakis D J and Kevrekidis P G 2008 Nonlinearity 21 R139
|
|
| [47] | Yang J and Lakoba T I 2007 Stud. Appl. Math. 118 153
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|