Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 094701    DOI: 10.1088/1674-1056/22/9/094701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity

Ahmed M. Megahed
Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
Abstract  The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the fourth-order Runge-Kutta method coupled with the shooting technique over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, slip velocity parameter, the Deborah number, and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. Comparison of numerical results is made with the earlier published results under limiting cases.
Keywords:  Maxwell fluid      unsteady stretching sheet      variable fluid properties      variable heat flux  
Received:  27 November 2012      Revised:  29 January 2013      Accepted manuscript online: 
PACS:  47.50.-d (Non-Newtonian fluid flows)  
  47.15.Cb (Laminar boundary layers)  
  47.45.Gx (Slip flows and accommodation)  
  47.10.ad (Navier-Stokes equations)  
Corresponding Authors:  Ahmed M. Megahed     E-mail:  ah_mg_sh@yahoo.com

Cite this article: 

Ahmed M. Megahed Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity 2013 Chin. Phys. B 22 094701

[1] Crane L J 1970 Z. Angew. Math. Phys. 21 645
[2] Gupta P S and Gupta A S 1977 Can. J. Chem. Eng. 55 744
[3] Banks W H H 1983 J. Mec. Theor. Appl. 2 375
[4] Chen C K and Char M 1988 J. Math. Anal. Appl. 135 568
[5] Magyari E and Keller B 1999 J. Phys. D: Appl. Phys. 32 2876
[6] Mahapatra T R and Gupta A S 2003 Can. J. Chem. Eng. 81 258
[7] Pop I and Na T 1996 Mech. Res. Commun. 23 413
[8] Elbashbeshy E M A and Bazid M A A 2003 Appl. Math. Comp. 138 239
[9] Elbashbeshy E M A and Bazid M A A 2004 Heat Mass Tran. 41 1
[10] Ali M E and Magyari E 2007 Int. J. Heat Mass Tran. 50 188
[11] Ishak A, Nazar R and Pop I 2009 Nonlinear Anal. Real World Appl. 10 2909
[12] El-Aziz M A 2010 Meccanica 45 97
[13] Rajagopal K R 1982 Int. J. Non-Linear Mech. 17 369
[14] Tan W C, Xiao P W and Yu X M 2003 Int. J. Non-Linear Mech. 38 645
[15] Hayat T, Shehzad S A and Alsaedi A 2012 Int. J. Phys. Sci. 7 761
[16] Mukhopadhyay S 2012 Chin. Phys. Lett. 29 054703
[17] Fetecau C, Athar M and Fetecau C 2009 Comput. Math. Appl. 57 596
[18] Mahmoud M A A and Megahed A M 2009 Can. J. Phys. 87 1065
[19] Dutta B K, Roy P and Gupta A S 1985 Int. Commun. Heat Mass Trans. 28 1234
[20] Cheng L C and Zong Y 2008 Mech. Res. Commun. 35 421
[21] Ching Y C 2011 Int. Commun. Heat Mass Trans. 38 44
[22] Abel M S, Tawade J and Nandeppanavar M M 2012 Meccanica 47 385
[23] Rao I J and Rajagopal K R 1999 Acta Mech. 135 113
[24] Ariel P D 2008 Z. Angew. Math. Mech. 88 320
[25] Abbas Z Z, Wang Y, Hayat T and Oberlack M 2009 Int. J. Numer. Meth. Fluids 59 443
[26] Mostafa A A M 2011 Math. Comput. Model. 54 1228
[27] Megahed A M 2011 Eur. Phys. J. Plus 126 82
[1] Erratum to “Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel”
Khaled S. Mekheimer, Soliman R. Komy, and Sara I. Abdelsalam. Chin. Phys. B, 2021, 30(9): 099901.
[2] Dual solutions in boundary layer flow of Maxwell fluid over a porous shrinking sheet
Krishnendu Bhattacharyya, Tasawar Hayat, Ahmed Alsaedi. Chin. Phys. B, 2014, 23(12): 124701.
[3] Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel
Khaled S. Mekheimer, Soliman R. Komy, Sara I. Abdelsalam. Chin. Phys. B, 2013, 22(12): 124702.
[4] Effects of transpiration on unsteady MHD flow of an upper convected Maxwell (UCM) fluid passing through a stretching surface in the presence of a first order chemical reaction
Swati Mukhopadhyay, M. Golam Arif, M. Wazed Ali Pk. Chin. Phys. B, 2013, 22(12): 124701.
[5] Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium
Cui Zhi-Wen(崔志文), Liu Jin-Xia(刘金霞), Yao Gui-Jin(姚桂锦), and Wang Ke-Xie(王克协). Chin. Phys. B, 2010, 19(8): 084301.
[6] Velocity overshoot of start-up flow for a Maxwellfluid in a porous half-space
Tan Wen-Chang(谭文长). Chin. Phys. B, 2006, 15(11): 2644-2650.
No Suggested Reading articles found!