Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050206    DOI: 10.1088/1674-1056/22/5/050206
GENERAL Prev   Next  

The discontinuous Petrov-Galerkin method for one-dimensional compressible Euler equations in the Lagrangian coordinate

Zhao Guo-Zhong (赵国忠)a, Yu Xi-Jun (蔚喜军)b, Guo Peng-Yun (郭鹏云)a
a Faculty of Mathematics, Baotou Teachers' College, Baotou 014030, China;
b Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  In this paper, a Petrov-Galerkin scheme named Runge-Kutta control volume (RKCV) discontinuous finite element method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian coordinate. Its advantages include preserving the local conservation and a high resolution. Compared with the Runge-Kutta discontinuous Galerkin (RKDG) method, the RKCV method is easier to be implemented. Moreover, the advantages of the RKCV and the Lagrangian methods are combined in the new method. Several numerical examples are given to illustrate the accuracy and the reliability of the algorithm.
Keywords:  compressible Euler equations      Runge-Kutta control volume discontinuous finite element method      Lagrangian coordinate  
Received:  13 September 2012      Revised:  18 November 2012      Accepted manuscript online: 
PACS:  02.70.Dh (Finite-element and Galerkin methods)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035 and 11171038), the Science Research Foundation of the Institute of Higher Education of Inner Mongolia Autonomous Region, China (Grant No. NJZZ12198), and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2012MS0102).
Corresponding Authors:  Zhao Guo-Zhong     E-mail:  zhaoguozhongbttc@sina.com

Cite this article: 

Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Guo Peng-Yun (郭鹏云) The discontinuous Petrov-Galerkin method for one-dimensional compressible Euler equations in the Lagrangian coordinate 2013 Chin. Phys. B 22 050206

[1] Bai D M and Zhang L M 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1263
[2] Beljadid A, Mohammadian A and Qiblawey H 2012 Computers & Fluids 62 64
[3] Steve Y and Pozrikidis C 1998 Computers & Fluids. 27 879
[4] Cheng R J and Cheng Y M 2011 Chin. Phys. B 20 070206
[5] Wang J F, Sun F X and Cheng Y M 2012 Chin. Phys. B 21 090204
[6] Cheng R J and Ge H X 2009 Chin. Phys. B 18 4059
[7] Ge H X, Liu Y Q and Cheng R J 2012 Chin. Phys. B 21 010206
[8] Wang J F, Sun F X and Cheng R J 2010 Chin. Phys. B 19 060201
[9] Cheng R J and Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese)
[10] Ren H P, Cheng Y M and Zhang W 2009 Chin. Phys. B 18 4065
[11] Cheng R J and Ge H X 2012 Chin. Phys. B 21 100209
[12] Yu H M, Cheng R J and Ge H X 2010 Chin. Phys. B 19 100512
[13] Cheng R J and Ge H X 2010 Chin. Phys. B 19 090201
[14] Cheng R J and Ge H X 2012 Chin. Phys. B 21 040203
[15] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese)
[16] Cheng Y M, Wang J F and Bai F N 2012 Chin. Phys. B 21 090203
[17] Cheng Y M, Li R X and Peng M J 2012 Chin. Phys. B 21 090205
[18] Després B and Mazeran C 2005 Archive for Rational Machanics and Analysis 178 327
[19] Cheng J and Shu C W 2007 Commun. Comput. Phys. 227 1008
[20] Loubére R, Ovadia J and Abgrall R 2004 Int. J. Numer. Meth. Fluids 44 645
[21] Maire P H 2009 J. Comput. Phys. 228 2391
[22] François V, Maire P H and Abgrall R 2011 Computers & Fluids 46 498
[23] Zhao G Z and Yu X J 2012 Acta Phys. Sin. 61 110208 (in Chinese)
[24] Zhao G Z, Yu X J and Zhang R P 2012 Chin. J. Comput. Phys. 29 166 (in Chinese)
[25] Cheng J and Shu C W 2007 J. Comput. Phys. 227 1567
[26] Shen Z J, Yan W and Lv G X 2010 J. Comput. Phys. 229 4522
[27] Hirt C, Amsden A and Cook J 1974 J. Comput. Phys. 14 227
[28] Reed W H and Hill T R 1973 Triangular Mesh Methods for the Neutron Transport Equation (Los Alamos Scientific Laboratory Report LA-UR-73-479)
[29] Cockburn B and Shu C W 1991 Math. Model. Numer. Anal. 25 337
[30] Cockburn B and Shu C W 1989 Math. Comp. 52 411
[31] Cockburn B, Lin S Y and Shu C W 1989 J. Comput. Phys. 84 90
[32] Cockburn B, Hou S and Shu C W 1990 Math. Comp. 54 545
[33] Cockburn B and Shu C W 1998 J. Comput. Phys. 141 199
[34] Cockburn B and Shu C W 2001 J. Sci. Comput. 16 173
[35] Chen R S and Yu X J 2006 Chin. J. Comput. Phys. 23 43
[36] Qiu J X, Liu T G and Khoo B C 2008 Commun. Comput. Phys. 3 479
[37] Qiu J X, Liu T G and Khoo B C 2007 J. Comput. Phys. 222 353
[38] Zhang R P, Yu X J and Zhao G Z 2011 Chin. Phys. B 20 110205
[39] Zhang R P, Yu X J and Feng T 2012 Chin. Phys. B 21 030202
[40] Zhang R P and Zhang L W 2012 Chin. Phys. B 21 090206
[41] Li R H, Chen Z and Wu W 2000 Generalized Difference Methods for Differential Equations (New York: Marcel Dekker)
[42] Baliga B R and Patankar S V 1980 Numerical Heat Transfer 3 393
[43] Chen Z X 2006 Networks and Heterogeneous Media 1 689
[44] Chen D W and Yu X J 2009 Chin. J. Comput. Phys. 26 501
[45] Chen D W, Yu X J and Chen Z X 2011 Int. J. Numer Meth. Fluids 67 711
[46] Francçois V 2012 Computers & Fluids 64 64
[47] Jia Z P and Zhang S D 2011 J. Comput. Phys. 230 2496
[48] Shu C W 1988 SIAM J. Sci. Stat. Comput. 9 1073
[49] Toro E F 1997 Riemann Solvers and Numerical Methods for Fluid Dynamics - a Practical Introduction (2nd edn.) (Berlin: Springer)
[50] Woodward P and Colella P 1984 J. Comput. Phys. 54 115
[1] Self-adjusting entropy-stable scheme for compressible Euler equations
Cheng Xiao-Han (程晓晗), Nie Yu-Feng (聂玉峰), Feng Jian-Hu (封建湖), Luo Xiao-Yu, Cai Li (蔡力). Chin. Phys. B, 2015, 24(2): 020202.
[2] A RKDG finite element method for the one-dimensional inviscid compressible gas dynamics equations in Lagrangian coordinate
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Zhang Rong-Pei (张荣培 ). Chin. Phys. B, 2013, 22(2): 020202.
[3] Variational iteration method for solving compressible Euler equations
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Xu Yun (徐云), Zhu Jiang (朱江). Chin. Phys. B, 2010, 19(7): 070203.
No Suggested Reading articles found!