Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 020202    DOI: 10.1088/1674-1056/22/2/020202
GENERAL Prev   Next  

A RKDG finite element method for the one-dimensional inviscid compressible gas dynamics equations in Lagrangian coordinate

Zhao Guo-Zhong (赵国忠)a, Yu Xi-Jun (蔚喜军)b, Zhang Rong-Pei (张荣培 )c
a Faculty of Mathematics, Baotou Teachers' College, Baotou 014030, China;
b Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
c School of Science, Liaoning Shihua University, Fushun 113001, China
Abstract  In this paper, Runge-Kutta Discontinuous Galerkin (RKDG) finite element method is presented to solve the one-dimensional inviscid compressible gas dynamic equations in Lagrangian coordinate. The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method. A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method. For multi-medium fluid simulation, the two cells adjacent to the interface are treated differently from other cells. At first, a linear Riemann solver is applied to calculate the numerical flux at the interface. Numerical examples show that there is some oscillation in the vicinity of the interface. Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical flux at the interface, which suppress the oscillation successfully. Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.
Keywords:  compressible gas dynamic equations      RKDG finite element method      Lagrangian coordinate      multi-medium fluid  
Received:  04 April 2012      Revised:  06 September 2012      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.70.Dh (Finite-element and Galerkin methods)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035, 11171038, and 10771019); the Science Reaearch Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region, China (Grant No. NJZZ12198); and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2012MS0102).
Corresponding Authors:  Zhao Guo-Zhong     E-mail:  zhaoguozhongbttc@sina.com

Cite this article: 

Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Zhang Rong-Pei (张荣培 ) A RKDG finite element method for the one-dimensional inviscid compressible gas dynamics equations in Lagrangian coordinate 2013 Chin. Phys. B 22 020202

[1] Zayed E M E and Arnous A H 2012 Chin. Phys. Lett. 29 080203
[2] Liu Y Q, Chen D Y and Hu C 2012 Chin. Phys. Lett. 29 080202
[3] Sun J Q, Luo S Y and Cai B G 2012 Acta Phys. Sin. 61 140203 (in Chinese)
[4] Pang J, Jin L H and Zhao Q 2012 Acta Phys. Sin. 61 140201 (in Chinese)
[5] Taogetusang and Bai Y M 2012 Acta Phys. Sin. 61 130202 (in Chinese)
[6] Hirt C, Amsden A and Cook J 1974 J. Comput. Phys. 14 227
[7] Cheng J and Shu C W 2007 J. Comput. Phys. 227 1567
[8] Cheng J and Shu C W 2008 Appl. Numer. Math. 58 1042
[9] Woodward P and Colella P 1984 J. Comput. Phys. 54 115
[10] Colella P and Woodward P 1984 J. Comput. Phys. 54 174
[11] Cheng J and Shu C W 2009 Chin. J. Comput. Phys. 26 633 (in Chinese)
[12] Jia Z P and Yu X J 2007 Chin. J. Comput. Phys. 24 543 (in Chinese)
[13] Shen Z J, Yan W and Lü G X 2010 J. Comput. Phys. 229 4522
[14] Reed W H and Hill T R 1973 Triangular Mesh Methods for the Neutron Transport Equation (Los Alamos Scientific Laboratory Report LA-UR-73-479)
[15] Cockburn B and Shu C W 1991 Math. Model. Numer. Anal. (M2AN) 25 337
[16] Cockburn B and Shu C W 1989 Math. Comp. 52 411
[17] Cockburn B, Lin S Y and Shu C W 1990 J. Comput. Phys. 84 90
[18] Cockburn B, Hou S and Shu C W 1990 Math. Comp. 54 545
[19] Cockburn B and Shu C W 1998 J. Comput. Phys. 141 199
[20] Cockburn B and Shu C W 2001 J. Sci. Comput. 16 173
[21] Chen R S and Yu X J 2006 Chin. J. Comput. Phys. 23 43 (in Chinese)
[22] Zhang R P, Yu X J and Zhao G Z 2011 Chin. Phys. B 20 110205
[23] Zhang R P, Yu X J and Feng T 2012 Chin. Phys. B 21 030202
[24] Zhang R P and Zhang L W 2012 Chin. Phys. B 21 090206
[25] Qian X, Song S H, Gao E and Li W B 2012 Chin. Phys. B 21 070206
[26] Qiu J X, Liu T G and Khoo B C 2008 Commun. Comput. Phys. 3 479
[27] Qiu J X, Liu T G and Khoo B C 2007 J. Comput. Phys. 222 353
[28] Li D Y, Shui H S, Dong S Q and Feng X S 1996 Chin. J. Comput. Phys. 13 57 (in Chinese)
[29] Sun S K, Shen L J and Shen Z J 2010 Chin. J. Comput. Phys. 27 317 (in Chinese)
[30] Zhao G Z and Yu X J 2012 Acta Phys. Sin. 61 110208 (in Chinese)
[31] Zhao G Z, Yu X J and Zhang R P 2012 Chin. J. Comput. Phys. 29 166 (in Chinese)
[32] Shu C W 1988 SIAM J. Sci. Stat. Comput. 9 1073
[33] Fedkiw R P, Aslam T, Merriman B and Osher S 1999 J. Comput. Phys. 152 457
[34] Caiden R, Fedkiw R P and Anderson C 2001 J. Comput. Phys. 166 1
[35] Fedkiw R P 2002 J. Comput. Phys. 175 200
[36] Abgrall R 1996 J. Comput. Phys. 125 150
[37] Abgrall R and Karni S 2001 J. Comput. Phys. 169 594
[38] Liu T G, Khoo B C and Yeo K S 2001 Comput. Fluids 30 291
[39] Liu T G, Khoo B C and Yeo K S 2001 Comput. Fluids 30 315
[40] Van Brummelen E H and Koren B 2003 J. Comput. Phys. 185 289
[41] Liu T G, Khoo B C and Yeo K S 2003 J. Comput. Phys. 190 651
[42] Liu T G, Khoo B C and Wang C W 2005 J. Comput. Phys. 204 193
[43] Dai W L and Woodward P R 1998 J. Comput. Phys. 142 182
[44] Toro E F 1997 Riemann Solvers and Numerical Methods for Fluid Dynamics-A Practical Introduction 2nd edn. (Berlin: Springer)
[45] Chen D W and Yu X J 2009 Chin. J. Comput. Phys. 26 501 (in Chinese)
[46] Harten A, Engquist B, Osher S and Chakravarthy S 1987 J. Comput. Phys. 71 231
[47] Tang H Z and Liu T G 2006 J. Comput. Phys. 218 451
[1] The discontinuous Petrov-Galerkin method for one-dimensional compressible Euler equations in the Lagrangian coordinate
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Guo Peng-Yun (郭鹏云). Chin. Phys. B, 2013, 22(5): 050206.
No Suggested Reading articles found!