Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 044102    DOI: 10.1088/1674-1056/22/4/044102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A low-frequency wideband metamaterial absorber based on a cave-disk resonator and resistive film

Nie Yan (聂彦), Cheng Yong-Zhi (程用志), Gong Rong-Zhou (龚荣洲)
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  A low-frequency wideband, polarization-insensitive and wide-angle metamaterial absorber (MA) is designed, simulated and analyzed. This MA consists of a periodic arrangement of cave-disk resonator (CDR), square resistive film (RF), and metal ground plane (GP) (a 0.8-mm-thick FR-4 dielectric spacer is sandwiched in between CDR and RF, and another 1.2-mm-thick FR-4 dielectric spacer is inserted in between RF and GP). The simulated results based on the finite integration technology (FIT) indicate that the absorption of the MA is greater than 90% and almost perfectly impedance-matched to the free space in the whole frequency range of 1 GHz-7 GHz. The simulated absorptions under the conditions of different polarization and incident angles indicate that this composite structure absorber is polarization-insensitive and wide-angle. Furthermore, the distribution of the power loss density indicates that the wideband absorptivity is mainly from the composite electromagnetic loss of the CDR and RF. This design provides an effective and feasible way to construct a low-frequency wideband absorber.
Keywords:  low-frequency      cave-disk resonator      resistive film  
Received:  30 May 2012      Revised:  28 August 2012      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Ja (Polarization)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51207060) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090142110004).
Corresponding Authors:  Cheng Yong-Zhi     E-mail:  cyz0715@126.com

Cite this article: 

Nie Yan (聂彦), Cheng Yong-Zhi (程用志), Gong Rong-Zhou (龚荣洲) A low-frequency wideband metamaterial absorber based on a cave-disk resonator and resistive film 2013 Chin. Phys. B 22 044102

[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] ShelbyR A, Smith D R and Schultz S 2001 Science 292 77
[3] Seddon N and Bearpark T 2003 Science 302 1537
[4] Grbic A and Eleftheriades G V 2002 J. Appl. Phys. 91 5930
[5] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[6] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[7] Landy N I, Sajuyigbe S, Mock J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[8] Cheng Y Z, Xiao T, Yang H L and Xiao B X 2010 Acta Phys. Sin. 59 536 (in Chinese)
[9] Engheta N 2002 IEEE Anten. Propag. Soc. Int. Symp. 2 92
[10] Avitzour Y, Yaroslav A, Urzhumov and Shvets G 2009 Phys. Rev. B 79 045131
[11] Lockyear M J, Hibbins A P, Sambles J R, Hobson P R and Lawrence C R 2009 Appl. Phys. Lett. 94 041913
[12] Cheng Y Z, Yang H L, Cheng Z Z and Xiao B X 2011 Photon. Nanostruct. Fundam. Appl. 9 8
[13] Grant J, Ma Y, Saha S, Khalid A and Cumming D R S 2011 Opt. Lett. 36 3476
[14] Ding P, Liang E, Cai G, Hu W Q, Fan C Z and Xue Q Z 2011 J. Opt. 13 075005
[15] Luo H, Cheng Y Z and Gong R Z 2011 Eur. Phys. J. B 81 387
[16] Gu S, Barrett J P, Hand T H, Popa B I and Cummer S A 2010 J. Appl. Phys. 108 064913
[17] Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D and Lin B Q 2010 Chin. Phys. Lett. 27 117802
[18] Filippo C, Agostino M and Giuliano M 2010 IEEE Trans. Anten. Propag. 58 1551
[19] Pang Y Q, Zhou Y J and Wang J 2011 J. Appl. Phys. 110 023704
[20] Sun L K, Cheng H F, Zhou Y J and Wang J 2011 Appl. Phys. A: Mater. Sci. Process. 105 49
[21] Yang Y J, Cui Y J, Wen G J, Zhong J P, Sun H B and Oghenemuero G 2012 Chin. Phys. B 21 038501
[22] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X and Wang X 2012 J. Appl. Phys. 111 044902
[23] Sun L K, Cheng H F, Zhou Y J and Wang J 2012 Chin. Phys. B 21 055201
[24] Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X and Wang X 2012 Acta Phys. Sin. 61 134101 (in Chinese)
[1] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[2] Tracking coherent low frequency vibrational information of Rh101 in ground and excited electronic states by broadband transient grating spectroscopy
Wei Zhang(张伟), Xiao-Song Liu(刘小嵩), Zan-Hao Wang(王赞浩), Yun-Fei Song(宋云飞), Yan-Qiang Yang(杨延强). Chin. Phys. B, 2018, 27(12): 123301.
[3] Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film
Dan-Dan Bu(布丹丹), Chun-Sheng Yue(岳春生), Guang-Qiu Zhang(张广求), Yong-Tao Hu(胡永涛), Sheng Dong(董胜). Chin. Phys. B, 2016, 25(6): 067802.
[4] Low-frequency oscillations in Hall thrusters
Wei Li-Qiu (魏立秋), Han Liang (韩亮), Yu Da-Ren (于达仁), Guo Ning (郭宁). Chin. Phys. B, 2015, 24(5): 055201.
[5] An ultrathin wide-band planar metamaterial absorber based on fractal frequency selective surface and resistive film
Fan Yue-Nong (范跃农), Cheng Yong-Zhi (程用志), Nie Yan (聂彦), Wang Xian (王鲜), Gong Rong-Zhou (龚荣洲). Chin. Phys. B, 2013, 22(6): 067801.
[6] Intermittency and bifurcation in SEPICs under voltage-mode control
Liu Fang(刘芳). Chin. Phys. B, 2010, 19(8): 080511.
[7] The periodic wave solutions for two systems of nonlinear wave equations
Wang Ming-Liang (王明亮), Wang Yue-Ming (王跃明), Zhang Jin-Liang (张金良). Chin. Phys. B, 2003, 12(12): 1341-1348.
[8] Low frequency fluctuation with two external cavity reflectors
Wang Chun-Lin (王春林), Wu Jian (伍剑), Lin Jin-Tong (林金桐). Chin. Phys. B, 2003, 12(10): 1120-1123.
No Suggested Reading articles found!