Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030205    DOI: 10.1088/1674-1056/22/3/030205
GENERAL Prev   Next  

Asymptotic solution of weak nonlinear model for mid-latitude stationary wind field of two-layer barotropic ocean

Lin Wan-Tao (林万涛)a, Zhang Yu (张宇)b, Mo Jia-Qi (莫嘉琪)c
a State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China;
b University of the Chinese Academy of Sciences, Beijing 100049, China;
c Department of Mathematics, Anhui Normal University, Wuhu 241003, China
Abstract  The weak nonlinear model of two-layer barotropic ocean with Rayleigh dissipation is built. The analytic asymptotic solution is derived in mid-latitude stationary wind field, and the physical meaning of the corresponding problem is discussed.
Keywords:  two-layer barotropic ocean      ocean model asymptotic solution  
Received:  18 July 2012      Revised:  16 August 2012      Accepted manuscript online: 
PACS:  02.30.Lt (Sequences, series, and summability)  
Fund: Project supported by the National Key Development Program for Basic Research of China (Grant No. 2011CB403501) and the National Natural Science Foundation of China (Grant Nos. 41175058, 41275062, and 11202106).
Corresponding Authors:  Lin Wan-Tao     E-mail:  linwt@lasg.iap.ac.cn

Cite this article: 

Lin Wan-Tao (林万涛), Zhang Yu (张宇), Mo Jia-Qi (莫嘉琪) Asymptotic solution of weak nonlinear model for mid-latitude stationary wind field of two-layer barotropic ocean 2013 Chin. Phys. B 22 030205

[1] Xue Y, Cane M A and Zebiak S E 1997 Monthly Weather Rev. 125 2043
[2] Wang C and Weisberg R H 1996 J. Climate 9 3132
[3] Wang C 2001 J. Climate 14 98
[4] Zhou T J, Yu R, Li H and Wang B 2008 J.Climate 21 3833
[5] Zhou T J, Wu B and Wang B 2009 J. Climate 22 1159
[6] Zhou T J and Zou L 2010 J. Climate 23 6009
[7] Zhou T J and Zhang J 2011 J. Climate. 24 1053
[8] Cabanes C, Huck T and de Verderce A G 2006 J. Phys. Oceanogyr. 36 1739
[9] Qiu B and Chen S M 2006 J. Phys. Oceanogyr. 36 1751
[10] Zhang Y C, Lu K C and Zhang M 2011 Acta Meteorodogica Sin. 31 11 (in Chinese)
[11] Lu K C, Zhang Y C and Zhang M 2011 Acta Meteorodogica Sin. 31 17 (in Chinese)
[12] Zhang Y C, Lu K C and Zhang M 2012 Climatic and Environmental Research 17 217
[13] Barbu L and Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag AG)
[14] Ramos M 2009 J. Math. Anal. Appl. 352 246
[15] D'Aprile T and Pistoia A 2010 J. Diff. Eqs. 248 556
[16] Faye L, Frenod E and Seck D 2011 Discrete Contin. Dyn. Sys. 29 1001
[17] Hou G L and Liu J C 2010 Chin. Phys. B 19 110305
[18] Wang F L 2010 Chin. Phys. B 19 060515
[19] Lin W T, Lin Y H and Mo J Q 2012 Chin. Phys. B 21 010204
[20] Mo J Q 2009 Sci. China Ser. G 39 568
[21] Mo J Q, Lin Y H and Lin W T 2010 Acta Phys. Sin. 59 6701 (in Chinese)
[22] Mo J Q 2011 Acta Phys. Sin. 60 090203 (in Chinese)
[23] Mo J Q 2010 Commun. Theor. Phys. 53 440
[24] Mo J Q, Lin W T and Lin Y H 2011 Chin. Phys. B 20 070205
[1] New approximate solution for time-fractional coupled KdV equations by generalised differential transform method
Liu Jin-Cun(刘金存) and Hou Guo-Lin(侯国林). Chin. Phys. B, 2010, 19(11): 110203.
[2] Relation between Debye series and generalized Lorentz–Mie theory of laser beam scattering by multilayer cylinder
Li Hai-Ying(李海英), Wu Zhen-Sen(吴振森), and Li Zheng-Jun(李正军). Chin. Phys. B, 2010, 19(10): 104202.
[3] Approximate analytic solutions for a generalized Hirota–Satsuma coupled KdV equation and a coupled mKdV equation
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Xu Yun (徐云), Zhu Jiang (朱江), Wu Di (吴迪). Chin. Phys. B, 2010, 19(8): 080204.
[4] A complexity measure approach based on forbidden patterns and correlation degree
Wang Fu-Lai(王福来). Chin. Phys. B, 2010, 19(6): 060515.
[5] Unified treatment for accurate and fast evaluation of the Fermi-Dirac functions
I. I. Guseinov and B. A. Mamedov. Chin. Phys. B, 2010, 19(5): 050501.
[6] Fractals in DNA sequence analysis
Yu Zu-Guo (喻祖国), Vo Anh, Gong Zhi-Min (龚志民), Long Shun-Chao (龙顺湖). Chin. Phys. B, 2002, 11(12): 1313-1318.
No Suggested Reading articles found!