Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 024301    DOI: 10.1088/1674-1056/22/2/024301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method

Liu Xiao-Zhou (刘晓宙), Zhu Yi (朱忆), Zhang Fei (张飞), Gong Xiu-Fen (龚秀芬)
Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  In most previous models, simulation of the temperature generation in tissue is based on the Pennes bio-heat transfer equation, which implies an instantaneous thermal energy deposition in medium. Due to the long thermal relaxation time τ (20 s-30 s) in biological tissues, the actual temperature elevation during clinical treatments could be different from the value predicted by the Pennes bioheat equation. Thermal wave model of bio-heat transfer (TWMBT) defines a thermal relaxation time to describe the tissue heating from ultrasound exposure. In this paper, COMSOL Multiphysics 3.5a, a finite element method software package, is used to simulate the temperature response in tissues based on Pennes and TWMBT equations. We further discuss different factors in the bio-heat transfer model on the influence of the temperature rising. And it is found that the temperature response in tissue under ultrasound exposure is a rising process with a declining rate. The thermal relaxation time inhibits the temperature elevation at the beginning of ultrasonic heating. Besides, thermal relaxation in TWMBT leads to lower temperature estimation than that based on Pennes equation during the same period of time. The blood flow carrying heat dominates most to the decline of temperature rising rate and the influence increases with temperature rising. On the contrary, heat diffusion, which can be described by thermal conductivity, has little effect on the temperature rising.
Keywords:  thermal wave model of bioheat transfer      temperature elevation      ultrasound irradiation  
Received:  13 June 2012      Revised:  26 August 2012      Accepted manuscript online: 
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.80.+p (Bioacoustics)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB707902 and 2012CB921504); the National Natural Science Foundation of China (Grant No. 11274166); and the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201207).
Corresponding Authors:  Liu Xiao-Zhou     E-mail:  xzliu@nju.edu.cn

Cite this article: 

Liu Xiao-Zhou (刘晓宙), Zhu Yi (朱忆), Zhang Fei (张飞), Gong Xiu-Fen (龚秀芬) Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method 2013 Chin. Phys. B 22 024301

[1] Pennes H H 1948 J. Appl. Physiol. 1 93
[2] Curra F P, Mourad P D, Khokhlova V A, Cleveland R O and Crum L A 2000 IEEE Trans. Ultrason. Ferro. Frequation Control 47 1077
[3] Huang J, Holt R G., Cleveland R O and Roy R A 2004 J. Acoust. Soc. Am. 116 2451
[4] Manzari M T and Manzari M T 1999 Commun. Numer. Meth. Eng. 15 853
[5] Roemer R B, Oleson J R and Cetas T C 1985 Am. J. Physiol. 249 153
[6] Liu J, Chen X and Xu X X 1999 IEEE Trans. Biomed. Eng. 46 420
[7] Liu J, Ren Z P and Wang C C 1996 J. Therm. Sci. 5 264
[8] Shih T C, Kou H S, Liauh C T and Lin W L 2005 Med. Phys. 32 3029
[9] Kaminski W 1990 ASME J. Heat Transfer 112 555
[10] Brazhnikov A M, Karpychev V A and Luikov A V 1975 Inzhenerno Fizicheskij Zhurnal. 28 677
[11] Mitra K, Kumar S, Vedavarz A and Moallemi M K 1995 ASME J. Heat Transfer 117 568
[12] Richardson A W, Imig C G, FeuchtB L and Hines H M 1950 Arch. Phys. Med. Rehabil. 31 19
[13] Davydov E V, Lubashevsky I A, Milyaev V A and Musin R F 2001 arXiv: cond-mat/0102006 1
[14] Banerjee A, Ogale A A, Das C, Mitra K and Subramanian C 2005 Heat Transfer Eng. 26 41
[15] Chen H T and Liu K C 2002 Jan. J. Appl. Phys. 41 6267
[16] Liu K C and Chen H T 2004 Appl. Math. Comput. 159 887
[17] Chen H T and Lin Y Y 1993 Int. J. Mass Transfer 36 2891
[18] Chen H T and Lin Y Y 1994 Int. J. Mass Transfer 37 153
[19] McDonald F A 1989 Appl. Phys. Lett. 54 1504
[20] McDonald F A 1990 Appl. Phys. Lett. 56 230
[21] Zhu W P, Tian F B and Ran P 2012 Int. J. Biomath. 5 1250022
[22] Lam T T and Fong E 2011 Int. J. Heat Mass Transfer 54 4796
[23] Ahmadikia1 H, Moradi A, Fazlali R and Parsa A B 2012 J. Mech. Sci. Technol. 26 1937
[24] Piyanka D, Rikhiya D and Ranajit D 2011 J. Phys. Sci. 15 171
[25] Ni J H, Chang C C, Yang Y T and Chen C K 2011 Cmes-computer Modeling in Engineer & Sciences 72 37
[26] Zhou J H, Zhang Y W and Chen J K 2008 Numerical Heat Transfer A: Applications 54 1
[27] Ghazizadeh H R and Maerefat M 2010 Iranian Journal of Mechanical Engineering 11 66
[28] Xu F, Seffen K A and Lu T J 2008 Int. J. Heat Mass Transfer 51 2237
[29] Fan T B, Zhang D, Zhang Z, Ma Y and Gong X F 2008 Chin. Phys. B 17 3372
[30] Cui W C, Tu J, Hwang J H, Li Q, Fan T B, Zhang D, Chen J H and Chen W Z 2012 Chin. Phys. B 21 074301
[31] Ma Y, Zhang D, Gong X F, Liu X Z, Ma Q Y and Qiu Y Y 2007 Chin. Phys. 16 2745
[32] Kuznetsov V P 1971 Sov. Phys. Acoust. 16 467
[33] Lang J, Erdmann B and Seebass M 1999 IEEE Trans. Biomed. Eng. 46 1129
[34] Zhu F L, Cheng X P and Zhang W Y 2009 Textile Research Journal 79 205
[35] Zhu F L, Ma S Q and Zhang W Y 2008 Heat Mass Transfer 45 99
[36] Zhu F L and Li K J 2011 Fire Technology 47 801
[37] Zhu F L and Zhang W Y 2009 J. Fire Sci. 27 81
[38] Choi B and Welch A J 2001 Lasers in Surgery and Medicine 29 351
[39] Jaunich M, Raje S, Kim K, Mitra K and Guo Z 2008 Int. J. Heat Mass Transfer 51 5511
[1] Influence of dynamic tissue properties on temperature elevation and lesions during HIFU scanning therapy: Numerical simulation
Xiao Zou(邹孝), Hu Dong(董胡), Sheng-You Qian(钱盛友). Chin. Phys. B, 2020, 29(3): 034305.
No Suggested Reading articles found!