Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100505    DOI: 10.1088/1674-1056/22/10/100505
GENERAL Prev   Next  

Four-cluster chimera state in non-locally coupled phase oscillator systems with an external potential

Zhu Yun (朱云)a b, Zheng Zhi-Gang (郑志刚)a, Yang Jun-Zhong (杨俊忠)c
a Department of Physics, Beijing Normal University, Beijing 100875, China;
b School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China;
c School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Dynamics of a one-dimensional array of non-locally coupled Kuramoto phase oscillators with an external potential is studied. A four-cluster chimera state is observed for the moderate strength of the external potential. Different from the clustered chimera states studied before, the instantaneous frequencies of the oscillators in a synchronized cluster are different in the presence of the external potential. As the strength of the external potential increases, a bifurcation from the two-cluster chimera state to the four-cluster chimera states can be found. These phenomena are well predicted analytically with the help of the Ott–Antonsen ansatz.
Keywords:  chimera state      non-local coupling      Kuramoto oscillators and Ott–Antonsen ansatz  
Received:  25 February 2013      Revised:  29 March 2013      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10875011 and 11075016), the 973 Project (Grant No. 2007CB814805), the Fundamental Research Funds for the Central Universities, the Foundation for Doctoral Training from the Ministry of Education of China.
Corresponding Authors:  Zheng Zhi-Gang     E-mail:  zgzheng@bnu.edu.cn

Cite this article: 

Zhu Yun (朱云), Zheng Zhi-Gang (郑志刚), Yang Jun-Zhong (杨俊忠) Four-cluster chimera state in non-locally coupled phase oscillator systems with an external potential 2013 Chin. Phys. B 22 100505

[1] Kuramoto Y and Battogtkh D 2002 Nonlinear Phenomena in Complex Systems 5 380
[2] Tanaka D and Kuramoto Y 2003 Phys. Rev. E 68 026219
[3] Abrams D M and Strogatz S H 2004 Phys. Rev. Lett. 93 174102
[4] Kawamura Y 2007 Phys. Rev. E 75 056204
[5] Omel’chenko O E, Maistrenko Y L and Tass P A 2008 Phys. Rev. Lett. 100 044105
[6] Motter A E 2010 Nat. Phys. 6 164
[7] Shima S I and Kuramoto Y 2004 Phys. Rev. E 69 036213
[8] Martens E A, Laing C R and Strogatz S H 2010 Phys. Rev. Lett. 104 044101
[9] Sheeba J H, Chandrasekar V K and Lakshmanan M 2010 Phys. Rev. E 81 046203
[10] Sethia G C, Sen A and Atay F M 2008 Phys. Rev. Lett. 100 144102
[11] Zhu Y, Li Y T, Zhang M and Yang J Z 2012 Europhys. Lett. 97 10009
[12] Abrams D M, Mirollo R, Strogatz S H and Wiley D A 2008 Phys. Rev. Lett. 101 084103
[13] Pikovsky A and Rosenblum M 2008 Phys. Rev. Lett. 101 264103
[14] Laing C R 2009 Physica D 238 1569
[15] Laing C R 2009 Chaos 19 013113
[16] Ott E and Antonsen T M 2009 Chaos 18 037113
[17] Ma R B, Wang J X and Liu Z H 2010 Europhys. Lett. 91 40006
[18] Omel’chenko O E, Wolfrum M and Maistrenko Y L 2010 Phys. Rev. E 81 065201
[19] Mathews C G, Lesku J A, Lima S L and Amlaner C J 2006 Ethology 112 286
[20] Olmi S, Politi A and Torcini A 2010 Europhys. Lett. 92 6007
[1] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
No Suggested Reading articles found!