INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Cosmological applications in Kaluza–Klein theory |
M. I. Wanasa)c)d), Gamal G. L. Nashedb)c)d)†, and A. A. Nowayae) |
a. Astronomy Department, Faculty of Science, Cairo University, Giza, Egypt;
b. Mathematics Department, Faculty of Science, King Faisal University, P.O. Box 380 Al-Ahsaa 31982, the Kingdom of Saudi Arabia;
c. Mathematics Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt;
d. Center for Theoretical Physics, British University of Egypt Sherouk City 11837, P.O. Box 43, Egypt;
e. Egyptian Relativity Group (ERG), Physics Department, Faculty of Science, Monofia University, Monofia, Egypt |
|
|
Abstract The field equations of Kaluza-Klein (KK) theory have been applied in the domain of cosmology. These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t. We use Taylor's expansion of cosmological function, $\varLambda$(t), up to the first order of the time t. The cosmological parameters are calculated and some cosmological problems are discussed.
|
Received: 28 September 2011
Revised: 26 October 2011
Accepted manuscript online:
|
PACS:
|
98.80.-k
|
(Cosmology)
|
|
98.80.Jk
|
(Mathematical and relativistic aspects of cosmology)
|
|
04.50.Cd
|
(Kaluza-Klein theories)
|
|
Corresponding Authors:
Gamal G. L. Nashed,nashed@bue.edu.eg
E-mail: nashed@bue.edu.eg
|
Cite this article:
M. I. Wanas, Gamal G. L. Nashed, and A. A. Nowaya Cosmological applications in Kaluza–Klein theory 2012 Chin. Phys. B 21 049801
|
[1] |
Perlmutter S, Aldering G, Della Valle M, Deustua S, Ellis R S, Fabbro S, Fruchter A, Goldhaber G, Groom D E, Hook I M, Kim A G, Kim M Y, Knop R A, Lidman C, McMahon R G, Nugent P, Pain R, Panagia N, Pennypacker C R, Ruiz-Lapuente P, Schaefer B and Walton N 1998 Nature 391 51
|
[2] |
Perlmutter S, Aldering G, Goldhaber G, Knop R A, Nugent P, Castro P G, Deustua S, Fabbro S, Goobar A, Groom D E, Hook I M, Kim A G, Kim M Y, Lee J C, Nunes N J, Pain R, Pennypacker C R, Quimby R, Lidman C, Ellis R S, Irwin M, McMahon R G, Ruiz-Lapuente P, Walton N, Schaefer B, Boyle B J, Filippenko A V, Matheson T, Fruchter A S, Panagia N, Newberg H J M, Couch W J and The Supernova Cosmology Project 1999 Astrophys. J. 517 565
|
[3] |
Reiess A G, Filippenko A V, Challis P, Clocchiatti A, Diercks A, Garnavich P M, Gilliland R L, Hogan C J, Jha S, Kirshner R P, Leibundgut B, Phillips M M, Reiss D, Schmidt B P, Schommer R A, Smith R C, Spyromilio J, Stubbs C, Suntzeff N B and Tonry J 1998 Astron. J. 116 1009
|
[4] |
Reiess A G, Strolger L G, Tonry J, Casertano S, Ferguson H C, Mobasher B, Challis P, Filippenko A V, Jha S, Li W D, Chornock R, Kirshner R P, Leibundgut B, Dickinson M, Livio M, Giavalisco M, Steidel C C, Ben'hitez T and Tsvetanov Z 2004 Astron. J. 607 665
|
[5] |
Wanas M I 2007 Int. J. Mod. Phys. A22 5709
|
[6] |
Wanas M I 2008 Proc. MGXI Part B p. 1782
|
[7] |
Sahni V 2002 Class. Quantum Grav. 19 3435
|
[8] |
Lahav O and Liddle A R 2004 Phys. Lett. B 592 1
|
[9] |
Kamenshchik A Y, Moschella U and Pasquier V 2001 Phys. Lett. B 511 265
|
[10] |
Zhu Z H and Fujimoto M K 2003 Astrophys. J. 585 52
|
[11] |
Sen S and Sen A 2003 Astrophys. J. 588 1
|
[12] |
Godlowski W, Szydlowski M and Krawiee A 2004 Astrophys. J. 605 599
|
[13] |
Godlowski W, Szydlowski M and Krawiee A 2004 Gen. Rel. Grav. 36 767
|
[14] |
Godlowski W, Stelmach J and Szydlowski M 2004 Class. Quantum Grav. 21 3953
|
[15] |
Puetzfeld D and Chen X 2004 Class. Quantum Grav. 21 2703
|
[16] |
Biesiada M, Godlowski W and Szydlowski M 2005 Astrophys. J. 622 28
|
[17] |
Caldwell R R 2002 Phys. Lett. B 554 23
|
[18] |
Carroll S M, Hofman M and Trodden M 2003 Phys. Rev. D 68 023509
|
[19] |
Hsu S D H, Jenkins A and Wise M B 2004 Phys. Lett. B 597 270
|
[20] |
Kaluza T and Unitätsproblem Z 1921 der Physik Sitz. Preuss. Akad. Wiss. Phys. Math. K1 966
|
[21] |
Klein O 1962 Quantentheorie und fünfdimensionale Relativitätstheorie, Zeits. Phys. 37 895
|
[22] |
Overduin J M and Wesson P S 1997 Phys. Rep. 283 303
|
[23] |
Bergmann P G 1968 Int. J. Theor. Phys. 1 25
|
[24] |
Wagoner R V 1970 Phys. Rev. D 1 3209
|
[25] |
Linde A D 1974 JETP Lett. 19 183
|
[26] |
Endbaro M and Fukui T 1977 Gen. Rel. Grav. 8 833
|
[27] |
Canuto V, Hsieh S H and Adams P J 1977 Phys. Rev. Lett. 39 429
|
[28] |
Kazanas D 1980 Astrophys. J. Lett. 241 L59
|
[29] |
Polyakov A M 1982 Sov. Phys. Usp. 25 187
|
[30] |
Adler S L 1982 Rev. Mod. Phys. 54 729
|
[31] |
Dolgov A D 1983 The Very Early Universe, ed. Gibbons G W, Hawking S W and Siklos S T C (Cambridge: Cambridge University Press) p. 449
|
[32] |
Abbott L F 1985 Phys. Lett. B 150 427
|
[33] |
Banks T 1985 Nucl. Phys. B 249 332
|
[34] |
Peccei R D, Solgravea J and Wetterich C 1987 Phys. Lett. B 195 183
|
[35] |
Barr S M 1987 Phys. Rev. D 36 1691
|
[36] |
Peebles P J E and Ratra B 1988 Astrophys. J. Lett. 325 L17
|
[37] |
Fujii Y and Nishioka T 1981 Phys. Lett. B 254 347
|
[38] |
Frieman J A, Hill C T, Stebbins A and Waga I 1995 Phys. Rev. Lett. 75 2077
|
[39] |
Moffat J W 1995 Phys. Lett. B 357 526
|
[40] |
Hawking S W 1984 Phys. Lett. B 134 403
|
[41] |
Banks T 1984 Phys. Rev. Lett. 52 1461
|
[42] |
Brown J D and Teitelboim C 1987 Phys. Lett. B 195 177
|
[43] |
Dolgov A D 1997 Phys. Rev. D 55 5881
|
[44] |
Dolgov A D 1997 9708045[astro-ph]
|
[45] |
Linde A D 1988 Phys. Lett. B 200 272
|
[46] |
Banks T 1988 Nucl. Phys. B 309 493
|
[47] |
Coleman S 1988 Nucl. Phys. B 310 643
|
[48] |
Tsamis N C and Woodard R P 1995 Ann. Phys. (NY) 238 1
|
[49] |
Brandenberger R H and Zhitnitsky A R 1997 Phys. Rev. D 55 4640
|
[50] |
Abramo L R W, Brandenberger R H and Mukhanov V F 1997 Phys. Rev. D 56 3248
|
[51] |
Carroll S M 2001 Living Rev. Relativity 4 1 http://www.livingreviews.org/lrr-2001-1
|
[52] |
Sharif M 2011 Gen. Rel. Grav. 43 2885
|
[53] |
Sharif M 2011 Astrophys. Space Sci. 334 209
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|