|
|
The structural and spectroscopic properties for uranium oxides |
Li Peng(李鹏)a), Jia Ting-Ting(贾婷婷)a), Gao Tao(高涛)a)†, and Li Gan(李赣)b) |
a. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
b. National Key Laboratory for Surface Physics and Chemistry, Mianyang 621907, China |
|
|
Abstract The equilibrium structures, the charge population, and the spectroscopic properties of UO, UO$_{2}$, UO$_{3}$, and U$_{2}$O$_{3}$ molecules are systematically investigated using the density functional theory (DFT) with the method of generalized gradient approximation (GGA). The bond lengths and the vibrational frequencies of the ground states of UO, UO$_{2 }$, and UO$_{3 }$ molecules are all in agreement with available experimental data. For U$_{2}$O$_{3 }$ molecules, our calculations indicate that the ground state of the U$_{2}$O$_{3}$ molecule is an $\tilde {\rm X}^{7}$A$_{1}^\prime$ state with $D_{3h }$ (trigonal bipyramid) symmetry ($R_{1}$(U--O)=0.2113 nm, $R_{2}$(U$_{1}$--U$_{2}$)=0.2921 nm, $\angle$U$_{1}$OU$_{2}=87.5$$^\circ$ , dihedral angle $\varTheta $(U,O$_1$,O$_2$,O$_3$)=62.40$^\circ$). The harmonic frequency, the IR intensity and the spin density of the U$_{2}$O$_{3}$ molecule are all obtained for the first time in theory. For the ground state of U$_{2}$O$_{3 }$ molecules, the vibrational frequencies are 178.46 (A$_{1}^\prime$), 276.79 (E$_{1}''$), 310.77 (E$_{1}^\prime$), 396.63 (A$_{2}''$), 579.15 (E$_{1}^\prime$), and 614.98 (A$_{1}^\prime$) cm$^{ - 1}$. The vibrational modes corresponding to the IR maximum peaks are worked out for UO$_{3}$ and U$_{2}$O$_{3 }$ molecules. Besides, the results of Gophinatan--Jug bond order indicate that UO, UO$_{2 }$, and UO$_{3 }$ molecules possess U=O double bonds and that the U$_{2}$O$_{3}$ molecule possesses U--O single bonds and a U--U single bond.
|
Received: 10 May 2011
Revised: 01 July 2011
Accepted manuscript online:
|
PACS:
|
33.20.-t
|
(Molecular spectra)
|
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
Corresponding Authors:
Gao Tao, E-mail:gaotao@scu.edu.cn
E-mail: gaotao@scu.edu.cn
|
Cite this article:
Li Peng(李鹏), Jia Ting-Ting(贾婷婷), Gao Tao(高涛), and Li Gan(李赣) The structural and spectroscopic properties for uranium oxides 2012 Chin. Phys. B 21 043301
|
[1] |
Korzhavyl P A, Leventevitos, Andersson D A and Johansson B 2004 Nat. Mater. 3 225
|
[2] |
Guido M and Balducci G 1991 J. Chem. Phys. 95 5373
|
[3] |
Lue C J, Jin J, Ortiz M J, Rienstra-Kiracofe J C and Heaven M C 2004 J. Am. Chem. Soc. 126 1812
|
[4] |
Infante I, Eliav E, Vilkas M J, Ishikawa Y, Kaldor U and Visscher L 2007 J. Chem. Phys. 127 124308
|
[5] |
Gagliardi L, Heaven M C, Krogh J W and Roos B O 2005 J. Am. Chem. Soc. 127 86
|
[6] |
Zhou M, Andrews L, Ismail N and Marsden C 2000 J. Phys. Chem. A 104 5495
|
[7] |
Zhou M, Andrews L, Li J and Bursten B E 1999 J. Am. Chem. Soc. 121 9712
|
[8] |
Tauge J T, Andrews L and Hunt R D 1993 J. Phys. Chem. 97 10920
|
[9] |
Hunt R D and Andrews L 1993 J. Chem. Phys. 98 3690
|
[10] |
Gagliardi L and Roos B O 2000 Chem. Phys. Lett. 331 229
|
[11] |
Gagliardi L, Roos B O, Malmqvis P AA and Dyke J M 2001 J. Phys Chem. A 105 10602
|
[12] |
Pyykkö P, Li J and Runeberg N 1994 J. Phys. Chem. 98 4809
|
[13] |
Lenthe E V, Baerends E J and Snijders J G 1993 J. Chem. Phys. 99 4597
|
[14] |
Lenthe E V, Baerends E J and Snijders J G 1994 J. Chem. Phys. 101 9783
|
[15] |
Lenthe E V, Baerends E J and Snijders J G 1999 J. Chem. Phys. 110 8943
|
[16] |
Perdew J P 1986 Phys. Rev. B 33 8822
|
[17] |
Perdew J P 1986 Phys. Rev. B 34 7406
|
[18] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
[19] |
Becke A D 1986 J. Chem. Phys. 84 4524
|
[20] |
Becke A D 1993 J. Chem. Phys. 98 5648
|
[21] |
Shannon R D 1976 Acta Crys. Sect. A 32 751
|
[22] |
Lyon J T, Hu H S, Andrews L and Li J 2007 PNAS 104 18919
|
[23] |
Zhang Y G and Li Y D 2010 Chin. Phys. B 19 03 3302
|
[24] |
Moskaleva L V, Matveev A V, Krüger S and Rösch N 2006 Chem. Eur. J. 12 629
|
[25] |
Moskaleva L V, Matveev A V, Dengler J and Rösch N 2006 Phys. Chem. Chem. Phys. 8 3767
|
[26] |
Chen J, Meng D Q, Du J G, Jiang G, Gao T and Zhu Z H 2010 Acta Phys. Sin. 59 1658 (in Chinese)
|
[27] |
Lenthee E V, Bearends E J and Snijders J G 1994 J. Chem. Phys. 101 9783
|
[28] |
Lenthee E V, Snijders J G and Bearends E J 1996 J. Chem. Phys. 105 6505
|
[29] |
Kaledin L A and Heaven M C 1997 J. Mol. Spectr. 185 1
|
[30] |
Jun L, Bursten B E, Andrews L and Marsden C J 2004 J. Am. Chem. Soc. 126 3424
|
[31] |
Herzberg G 1966 Molecular Spectra and Molecular Structure III (New York: Van Nostrand Reinhold Company) pp. 570-572
|
[32] |
Ruiz-Morales Y 2002 J. Phys. Chem. A 106 11283
|
[33] |
Xu G X and Wang X Y 2010 The Structure of Matter (Beijing: Science Press) pp. 72, 94 (in Chinese)
|
[34] |
Green D W, Reedy G T and Gabelnick S D 1980 J. Chem. Phys. 73 4207
|
[35] |
Jacox M E 1994 Chem. Phys. 189 149
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|