Please wait a minute...
Chinese Physics, 2005, Vol. 14(1): 28-32    DOI: 10.1088/1009-1963/14/1/006
GENERAL Prev   Next  

Direct approach to perturbation theory for bright solitons

Yan Jia-Ren (颜家壬), Ao Sheng-Mei (敖胜美), Yu Hui-You (俞慧友)
Department of Physics, Hunan Normal University, Changsha,410081, China
Abstract  A direct approach to perturbation theory for the nonlinear Schr?dinger equation is developed based on the separation of variables. The first-order effects of perturbation on a bright soliton, i.e. the slow time dependence of soliton parameters and the first-order correction are derived.
Keywords:  bright soliton      nonlinear Schr?dinger equation      soliton perturbation  
Received:  20 May 2004      Revised:  30 June 2004      Accepted manuscript online: 
PACS:  0340K  
  0290  
  1190  
Fund: Project supported by National Natural Science Foundation of China (Grant No 10375022).

Cite this article: 

Yan Jia-Ren (颜家壬), Ao Sheng-Mei (敖胜美), Yu Hui-You (俞慧友) Direct approach to perturbation theory for bright solitons 2005 Chinese Physics 14 28

[1] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[2] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[3] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[4] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[5] Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate
T F Xu(徐天赋). Chin. Phys. B, 2018, 27(1): 016702.
[6] Moving bright solitons in a pseudo-spin polarization Bose-Einstein condensate
Tian-Fu Xu(徐天赋), Yu-Feng Zhang(张玉峰), Lei-Chao Xu(许磊超), Zai-Dong Li(李再东). Chin. Phys. B, 2017, 26(10): 100304.
[7] Current-induced magnetic soliton solutions in a perpendicular ferromagnetic anisotropy nanowire
Li Qiu-Yan (李秋艳), Zhao Fei (赵飞), He Peng-Bin (贺鹏斌), Li Zai-Dong (李再东). Chin. Phys. B, 2015, 24(3): 037508.
[8] Spatiotemporal binary interaction and designer quasi-particle condensates
Ramaswamy Radha, Pattu Sakthi Vinayagam, Hyun Jong Shin, Kuppuswamy Porsezian. Chin. Phys. B, 2014, 23(3): 034214.
[9] Interactions between bright solitons in different species of Bose–Einstein condensates
Jia-Ren Yan(颜家壬) and Jie Zhou(周杰) . Chin. Phys. B, 2012, 21(6): 060304.
[10] Solitons for the cubic–quintic nonlinear Schrödinger equation with varying coefficients
Chen Yuan-Ming(陈元明), Ma Song-Hua(马松华), and Ma Zheng-Yi(马正义) . Chin. Phys. B, 2012, 21(5): 050510.
[11] Stabilised bright solitons in Bose—Einstein condensates in an expulsive parabolic and complex potential
Zhang Tao(张涛), Yang Zhan-Ying(杨战营), Zhao Li-Chen(赵立臣), and Yue Rui-Hong(岳瑞宏). Chin. Phys. B, 2010, 19(7): 070502.
[12] Bright and dark soliton solutions in growing Bose—Einstein condensates
Song Wei-Wei(宋伟为), Li Qiu-Yan(李秋艳), Li Zai-Dong(李再东), and Fu Guang-Sheng(傅广生). Chin. Phys. B, 2010, 19(7): 070503.
[13] Rotating soliton clusters in nonlocal nonlinear media
Wang Yu-Qing(王玉青) and Guo Qi(郭旗). Chin. Phys. B, 2008, 17(7): 2527-2534.
[14] Controlling the amplitude of soliton in agrowing Bose--Einstein condensate by means of Feshbach resonance
He Zhang-Ming(何章明), Wang Deng-Long(王登龙), Zhang Wei-Xi(张蔚曦), Wang Feng-Jiao(王凤姣), and Ding Jian-Wen(丁建文). Chin. Phys. B, 2008, 17(10): 3640-3643.
[15] Exact periodic solution in coupled nonlinear Schrödinger equations
Li Qi-Liang(李齐良), Chen Jun-Lang(陈均朗), Sun Li-Li(孙丽丽), Yu Shu-Yi(余淑毅), and Qian Sheng(钱胜). Chin. Phys. B, 2007, 16(6): 1545-1548.
No Suggested Reading articles found!