Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 128901    DOI: 10.1088/1674-1056/21/12/128901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multidimensional subdiffusion model: Arbitrage-free market

Li Guo-Hua (李国华), Zhang Hong (张红), Luo Mao-Kang (罗懋康)
College of Mathematics, Sichuan University, Chengdu 610064, China
Abstract  To capture the subdiffusive characteristics of financial markets, the subordinated process, directed by the inverse α-stale subordinator Sα(t) for 0 < α <1, has been employed as the model of asset prices. In this article, we introduce a multidimensional subdiffusion model that has a bond and K correlated stocks. The stock price process is a multidimensional subdiffusion process directed by the inverse α-stable subordinator. This model describes the period of stagnation for each stock and the behavior of the dependency between multiple stocks. Moreover, we derive the multidimensional fractional backward Kolmogorov equation for the subordinated process by Laplace transform technique. Finally, using martingale approach, we prove that the multidimensional subdiffusion model is arbitrage-free, and also gives an arbitrage-free pricing rule for contingent claims associated with the martingale measure.
Keywords:  subordination      arbitrage-free      contingent claim valuation      fractional backward kolmogorov equation  
Received:  06 May 2011      Revised:  07 June 2012      Accepted manuscript online: 
PACS:  89.65.Gh (Economics; econophysics, financial markets, business and management)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.10.Gg (Stochastic analysis methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11171238).
Corresponding Authors:  Luo Mao-Kang     E-mail:  makaluo@scu.edu.cn

Cite this article: 

Li Guo-Hua (李国华), Zhang Hong (张红), Luo Mao-Kang (罗懋康) Multidimensional subdiffusion model: Arbitrage-free market 2012 Chin. Phys. B 21 128901

[1] Wang X T, Zhu E H, Tang M M and Yan H J 2010 Physica A 389 445
[2] Chen J H, Ren F Y and Qiu W Y 2004 Chaos, Solitons and Fractals 21 1163
[3] Pascucci A 2011 PDE and Martingale Methods in Option Pricing (Berlin: Springer-Verlag)
[4] Etheridge A 2002 A Course in Financial Calculus (New York: Cambridge University Press)
[5] Liang J R, Wang J, Lŭ L J, Gu H, Qiu W Y and Ren F Y 2012 J. Stat. Phys. 146 205
[6] Cartea A and del-Castillo-Negrete D 2007 Physica A 374 749
[7] Magdziarz M 2009 J. Stat. Phys. 136 553
[8] Li H B and Li Z 2010 Chin. Phys. B 19 054401
[9] Iddo E and Joseph K 2004 Physica D 187 30
[10] Magdziarz M, Orzel S and Weron A 2011 J. Stat. Phys. 145 187
[11] Barkai E 2001 Phys. Rev. E 63 046118
[12] Lü Y and Bao J D 2011 Phys. Rev. E 84 051108
[13] Magdziarz M 2009 Stochastic Processes and Their Applications 119 3238
[14] Lin F and Bao J D 2011 Chin. Phys. B 20 040502
[15] Magdziarz M, Weron A and Klafter J 2008 Phys. Rev. Lett. 101 210601
[16] Henry B I, Langlands T A M and Straka P 2010 Phys. Rev. Lett. 105 170602
[17] Magdziarz M, Weron A and Weron K 2007 Phys. Rev. E 75 016708
[18] Stanislavsky A A 2007 Chaos, Solitons and Fractals 34 51
[19] Stanislavsky A A 2003 Phys. Rev. E 67 021111
[20] Stanislavsky A A 2003 Physica A 318 469
[21] Lv L J, Ren F Y and Qiu W Y 2010 Physica A 389 4809
[22] Wang J, Liang J R, Lü L J, Qiu W Y and Ren F Y 2012 Physica A 391 750
[23] Cont R and Tankov P 2004 Financial Modelling with Jump Processes (Boca Raton: Chapman and Hall/Crc)
[24] Baxter M and Rennie A 1996 Financial Calculus (New York: Cambridge University Press)
[25] Harrison J M and Pliska S R 1981 Stochastic Processes and Their Applications 11 215
[26] Harrison J M and Pliska S R 1983 Stochastic Processes and Their Applications 15 313
[27] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press)
[28] Zhang H, Li G H and Luo M K 2012 Chin. Phys. B 21 060201
[29] Magdziarz M 2010 Stoch. Models 26 256
[30] Protter P E Stochastic Integration and Differential Equations (Berlin: Springer-Verlag)
[31] Revuz D and Yor M 1999 Continuous Martingales and Brownian Motion (Berlin: Springer-Verlag)
[1] Fractional backward Kolmogorov equations
Zhang Hong(张红), Li Guo-Hua(李国华), and Luo Mao-Kang(罗懋康) . Chin. Phys. B, 2012, 21(6): 060201.
No Suggested Reading articles found!