Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100502    DOI: 10.1088/1674-1056/21/10/100502
GENERAL Prev   Next  

Chaotic behavior learning of Chua's circuit

Sun Jian-Cheng (孙建成)
School of Software and Communication Engineering, Jiangxi University of Finance and Economics, Nanchang 330013, China
Abstract  Least-square support vector machines (LS-SVM) are applied for learning the chaotic behavior of Chua's circuit. The system is divided into three multiple-input single-output (MISO) structures and the LS-SVM are trained individually. Comparing with classical approaches, the proposed one reduces the structural complexity and the selection of parameters is avoided. Some parameters of the attractor are used to compare the chaotic behavior of the reconstructed and the original systems for model validation. Results show that the LS-SVM combined with the MISO can be trained to identify the underlying link among Chua's circuit state variables, and exhibit the chaotic attractors under the autonomous working mode.
Keywords:  chaotic behavior      Chua's circuit      support vector machines  
Received:  08 March 2012      Revised:  20 April 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Tp (Time series analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61072103) and the Jiangxi Province Training Program for Younger Scientists.
Corresponding Authors:  Sun Jian-Cheng     E-mail:  sunjc73@gmail.com

Cite this article: 

Sun Jian-Cheng (孙建成) Chaotic behavior learning of Chua's circuit 2012 Chin. Phys. B 21 100502

[1] Chua L O, Wu C W, Huang A and Zhong G Q 1993 IEEE Trans. Circ. Syst. I 40 732
[2] Bilotta E, Gervasi S and Pantano P 2005 Int. J. Bifur. Chaos 15 253
[3] Bilotta E and Pantano P 2006 Int. J. Bifur. Chaos 16 523
[4] Brillinger D R 2001 Time Series, Data Analysis and Theory (New York: McGraw-hill) pp. 16-44
[5] Pandit S M and Yu S M 1993 Time Series and System Analysis with Applications (New York: Wiley) pp. 20-25
[6] Packard N H, Crutchfield J P, Farmer J D and Shaw R S 1980 Phys. Rev. Lett. 45 712
[7] Takens F 1980 In Dynamical Systems and Turbulence (Berlin: Springer) pp. 366-381
[8] Meyer Y and Ryan R D 1993 Wavelets, Algorithms and Applications (Philadephia: SIAM) pp. 13-18
[9] Kravtsov Y A and Kadtke J B 1997 Predictability of Complex Dynarnical Systems (Berlin: Springer) pp. 110-121
[10] Zhang J S and Xiao X C 2000 Chin. Phys. Lett. 17 88
[11] Gao Y and Meng J E 2005 Fuzzy Set Syst. 150 331
[12] Cannas B, Cincotti S, Marchesi M and Pilo F 2001 Chaos, Solitons and Fractals 12 2109
[13] Omidvar A E 2004 Chaos, Solitons and Fractals 22 757
[14] Cowper M R, Mulgrew B and Unsworth C P 2002 Signal Proc. 82 775
[15] Brahim-Belhouari S and Bermak A 2004 Comput Stat. Data Anal. 47 705
[16] Müller K R, Smola A, Rätsch G, Schölkopf B, Kohlmorgen J and Vapnik V 1999 In Advances in Kernel Methods (Cambridge: MIT Press) pp. 25-42
[17] Suykens J A K and Vandewalle J 2000 IEEE Tran. Circ. Syst. I 47 1109
[18] Sun J C, Zhou Y T and Luo J G 2006 Chin. Phys. 15 1208
[19] Grau-Sánchez M, Noguera M, Peris J M and Díaz-Barrero J L 2010 Nonlinear Anal-Real. 11 414
[20] Hanbay D, Turkoglu I and Demir Y 2008 Expert. Syst. Appl. 34 2278
[21] Wu X D and Song Z H 2008 Chin. Phys. B 17 3241
[22] Ma Q L, Zheng Q L, Peng H, Zhong T W and Qin J W 2008 Chin. Phys. B 17 536
[23] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285
[24] Grassberger P and Procaccia I 1983 Phys. Rev. Lett. 50 346
[1] Chaotic behaviors of the (2+1)-dimensional generalized Breor–Kaup system
Ma Song-Hua(马松华), Fang Jian-Ping(方建平), Ren Qing-Bao(任清褒), and Yang Zheng(杨征) . Chin. Phys. B, 2012, 21(5): 050511.
[2] Chaos in a fractional-order micro-electro-mechanical resonator and its suppression
Mohammad Pourmahmood Aghababa. Chin. Phys. B, 2012, 21(10): 100505.
[3] Chaotic time series prediction using fuzzy sigmoid kernel-based support vector machines
Liu Han (刘涵), Liu Ding (刘丁), Deng Ling-Feng (邓凌峰). Chin. Phys. B, 2006, 15(6): 1196-1200.
[4] Prediction of chaotic systems with multidimensional recurrent least squares support vector machines
Sun Jian-Cheng (孙建成), Zhou Ya-Tong (周亚同), Luo Jian-Guo (罗建国). Chin. Phys. B, 2006, 15(6): 1208-1215.
[5] Chaotic time series prediction using least squares support vector machines
Ye Mei-Ying (叶美盈), Wang Xiao-Dong (汪晓东). Chin. Phys. B, 2004, 13(4): 454-458.
[6] Modelling of chaotic systems based on modified weighted recurrent least squares support vector machines
Sun Jian-Cheng (孙建成), Zhang Tai-Yi (张太镒), Liu Feng (刘枫). Chin. Phys. B, 2004, 13(12): 2045-2052.
No Suggested Reading articles found!