CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Local leakage current behaviours of BiFeO3 films |
Zou Cheng(邹成)a)b)c), Chen Bin(陈斌) b)c)†, Zhu Xiao-Jian(朱小健)b)c), Zuo Zheng-Hu(左正笏)b)c), Liu Yi-Wei(刘宜伟) b)c), Chen Yuan-Fu(陈远富)a), Zhan Qing-Feng(詹清峰)b)c), and Li Run-Wei(李润伟)b)c) |
a State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; b Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; c Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
|
|
|
Abstract The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathways are found to be located mainly at the grain boundaries of the films. The leakage current density can be tuned by changing the post-annealing temperature, the annealing time, the bias voltage and the light illumination, which can be used to improve the performances of the ferroelectric devices based on the BiFeO3 films. A possible leakage mechanism is proposed to interpret the charge transports in the polycrystalline BiFeO3 films.
|
Received: 07 June 2011
Revised: 19 June 2011
Accepted manuscript online:
|
PACS:
|
77.55.Nv
|
(Multiferroic/magnetoelectric films)
|
|
73.50.Pz
|
(Photoconduction and photovoltaic effects)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by the Chinese Academy of Sciences, the State Key Project of Fundamental Research of China, and the Natural
Science Foundation of Ningbo, China. |
Cite this article:
Zou Cheng(邹成), Chen Bin(陈斌), Zhu Xiao-Jian(朱小健), Zuo Zheng-Hu(左正笏), Liu Yi-Wei(刘宜伟), Chen Yuan-Fu(陈远富), Zhan Qing-Feng(詹清峰), and Li Run-Wei(李润伟) Local leakage current behaviours of BiFeO3 films 2011 Chin. Phys. B 20 117701
|
[1] |
Catalan G and Scott J F 2009 Adv. Mater. 21 2463
|
[2] |
Hill N A 2000 J. Phys. Chem. B 104 6694
|
[3] |
Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
|
[4] |
Sun Y, Huang Z F, Fan H G, Ming X, Wang C Z and Chen G 2009 Acta Phys. Sin. 58 0193 ( in Chinese)
|
[5] |
Dho J, Qi X D, Kim H, MacManus-Driscoll J L and Blamire M G 2006 Adv. Mater. 18 1445
|
[6] |
Ederer C and Spaldin N A 2005 Phys. Rev. B 71 224103
|
[7] |
Singh S K, Ishiwara H, Sato K and Maruyama K 2007 J. Appl. Phys. 102 094109
|
[8] |
Kawae T, Terauchi Y, Tsuda H, Kumeda M and Morimoto A 2009 Appl. Phys. Lett. 94 112904
|
[9] |
Naganuma H, Miura J and Okamura S 2008 Appl. Phys. Lett. 93 052901
|
[10] |
Murari N M, Kumar A, Thomas R and Katiyara R S 2008 Appl. Phys. Lett. 92 132904
|
[11] |
Habouti S, Shiva R K, Solterbeck C H, Es-Sounia M and Zaporojtchenko V 2007 J. Appl. Phys. 102 44113
|
[12] |
Pabst G W, Martin L W, Chu Y H and Ramesh R 2007 Appl. Phys. Lett. 90 072902
|
[13] |
Yang H, Jain M, Suvorova N A, Zhou H, Luo H M, Feldmann D M, Dowden P C, DePaula R F, Foltyn S R and Jia Q X 2007 Appl. Phys. Lett. 91 72911
|
[14] |
Xie Z, Luo E Z, Xu J B, Wilson I H, Peng H B, Zhao L H and Zhao B R 2000 Appl. Phys. Lett. 76 1923
|
[15] |
Rozier Y, Gautier B, Hyvert G, Descamps A, Plossu C, Dubourdieu C and Ducroquet F 2009 Thin Soild Films 517 1868
|
[16] |
Abe K and Komatsu S 1993 Jpn. J. Appl. Phys. 32 4186
|
[17] |
Fujisawa H, Shimizu M, Horiuchi T, Shiosaki T and Matsushige K 1997 Appl. Phys. Lett. 71 416
|
[18] |
Guillan J, Taravel G, Defay E, Ulmer L, Galera L, Andre B and Baume F 2004 Integr. Ferroelectr. 67 93
|
[19] |
Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J and Ramesh R 2009 Nat. Mater. 8 229
|
[20] |
Hu S H, Hu G J, Meng X J, Wang G S, Sun J L, Guo S L, Chu J H and Dai N 2004 J. Cryst. Growth 260 109
|
[21] |
Sushil K S, Shanthy S and Ishiwara H 2010 J. Appl. Phys. 108 054102
|
[22] |
Hu H and Krupanidhi S B 1994 J. Mater. Res. 9 1484
|
[23] |
Naganuma H, Miura J and Okamura S 2008 Appl. Phys. Lett. 93 52901
|
[24] |
Choi T, Lee S, Choi Y J, Kiryukhin V and Cheong S W 2009 Science 324 63
|
[25] |
Yang S Y, Martin L W, Byrnes S J, Conry T E, Basu S R, Paran D, Reichertz L, Ihlefeld J, Adamo C, Melville A, Chu Y H, Yang C H, Musfeldt J L, Schlom D G, Ager III J W and Ramesh R 2009 Appl. Phys. Lett. 95 62909
|
[26] |
Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X and Musfeldt J L 2008 Appl. Phys. Lett. 92 91905
|
[27] |
Qin M, Yao Y and Liang Y C 2008 Appl. Phys. Lett. 93 122904
|
[28] |
Luo B C, Chen C L and Xie L 2011 Acta Phys. Sin. 60 027306 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|