Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030202    DOI: 10.1088/1674-1056/19/3/030202
GENERAL Prev   Next  

Homotopic mapping solving method of the reduces equation for Kelvin waves

Mo Jia-Qi(莫嘉琪)a)b)†, Lin Yi-Hua(林一骅)c), and Lin Wan-Tao(林万涛)c)
a Department of Mathematics, Anhui Normal University, Wuhu 241000, Chinab Division of Computational Science, E-Institutes of Shanghai Universities, at SJTU, Shanghai 200240, China; c LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  A reduces equation of the Kelvin wave is considered. By using the homotopic mapping solving method, the approximate solution is obtained. The homptopic mapping method is an analytic method, the obtained solution can analyse operations sequentially.
Keywords:  homotopic mapping      approximate solution      Kelvin wave  
Received:  01 August 2009      Revised:  22 August 2009      Accepted manuscript online: 
PACS:  92.60.hh (Acoustic gravity waves, tides, and compressional waves)  
  92.60.hk (Convection, turbulence, and diffusion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~40876010), the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No.~KZCX2-YW-Q03-08), LASG State Key Laboratory Special Fund, E-Institutes of Shanghai Municipal Education Commission (Grant No.~E03004) and the Natural Science Foundation of Zhejiang Province, China (Grant No.~Y6090L4).

Cite this article: 

Mo Jia-Qi(莫嘉琪), Lin Yi-Hua(林一骅), and Lin Wan-Tao(林万涛) Homotopic mapping solving method of the reduces equation for Kelvin waves 2010 Chin. Phys. B 19 030202

[1] Emanuel K A 1979 J. Atm. Sci . 36 2425
[2] Sun W Y 1995 Q. J. Meteorol. Soc . 121 419
[3] Guarguaglini F R 2007 Commun. Partial Diff. Equs. 32 163
[4] Hovhannisyan G and Vulanovic R 2008 Nonlinear Stud. 15 297
[5] Abid I, Jieli M and Trabelsi N 2008 Anal. Appl. Singap. 6 213
[6] Graef J R and Kong L 2008 Math. Proc. Camb. Philos. Soc. 145 489
[7] Barbu L and Cosma E 2009 J. Math. Anal. Appl. 351 392
[8] Mo J Q 2009 Adv. Math. 38 227
[9] Mo J Q and Lin W T 2008 J. Sys. Sci. & Complexity 20 119
[10] Mo J Q and Wang H 2007 Acta Ecologica Sinica 27 4366
[11] Mo J Q 2009 Science in China Ser G 39 568
[12] Mo J Q 2009 Acta Phys. Sin. 58 695 (inChinese)
[13] Mo J Q and Chen Y 2009 Acta Phys. Sin. 58 4379 (in Chinese)
[14] Mo J Q 2009 Chin. Phys. Lett. 26 010204
[15] Mo J Q 2009 Chin. Phys. Lett. 26 060202
[16] Mo J Q, Zhang W J and He M 2006 Acta Phys. Sin. 55 3233 (in Chinese)
[17] Mo J Q and Lin W T 2008 Chin. Phys. B 17 370
[18] Mo J Q, Lin W T and Wang H 2007 Prog. Nat.Sci. 17 230
[19] Mo J Q, Lin W T and Wang H 2008 Chin. GeographicalSci. 18 193
[20] Mo J Q 2009 Acta Math. Sci. 29 101
[21] Mo J Q and Lin W T 2008 Chin. Phys. B 17 743
[22] Mo J Q, Lin W T and Lin Y H 2009 Chin. Phys. B 18 3624
[23] Mo J Q and Lin W T 2008 Chin. Phys. B 17 370
[24] Raymond W H 2001 Dynamics Atmospheres andOceans 34 23
[25] He J H 1999 Appl. Mech. Eingrg. 178 257
[26] He J H 2002 Int. J. Non-linear Mechanics 35 37
[27] Liao S J 2004 Beyond Perturbation: Introduction tothe Homotopy Analysis Method (New York: CRC Press Co)
[1] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[2] Dynamic characteristics of resonant gyroscopes study based on the Mathieu equation approximate solution
Fan Shang-Chun(樊尚春), Li Yan(李艳), Guo Zhan-She(郭占社), Li Jing(李晶), and Zhuang Hai-Han(庄海涵) . Chin. Phys. B, 2012, 21(5): 050401.
[3] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[4] Approximate solutions of nonlinear PDEs by the invariant expansion
Wu Jiang-Long (吴江龙), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2012, 21(12): 120204.
[5] Asymptotic solution for the Eiño time delay sea–air oscillator model
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Lin Yi-Hua(林一骅). Chin. Phys. B, 2011, 20(7): 070205.
[6] Approximate solution for the Klein-Gordon-Schr?dinger equation by the homotopy analysis method
Wang Jia(王佳), Li Biao(李彪), and Ye Wang-Chuan(叶望川). Chin. Phys. B, 2010, 19(3): 030401.
[7] Three types of generalized Kadomtsev-Petviashvili equations arising from baroclinic potential vorticity equation
Zhang Huan-Ping(张焕萍), Li Biao(李彪), Chen Yong (陈勇), and Huang Fei(黄菲). Chin. Phys. B, 2010, 19(2): 020201.
[8] Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation
Mo Jia-Qi(莫嘉琪) and Chen Xian-Feng(陈贤峰). Chin. Phys. B, 2010, 19(10): 100203.
[9] A new method to obtain approximate symmetry of nonlinear evolution equation from perturbations
Zhang Zhi-Yong(张智勇), Yong Xue-Lin(雍雪林), and Chen Yu-Fu(陈玉福). Chin. Phys. B, 2009, 18(7): 2629-2633.
[10] Homotopic mapping solution of an oscillator for the El Niño La Niña-southern oscillation
Zhou Xian-Chun(周先春), Lin Yi-Hua(林一骅), Lin Wan-Tao(林万涛), and Mo Jia-Qi(莫嘉琪). Chin. Phys. B, 2009, 18(11): 4603-4607.
[11] Approximation of the soliton solution for the generalized Vakhnenko equation
Mo Jia-Qi (莫嘉琪). Chin. Phys. B, 2009, 18(11): 4608-4612.
[12] The homotopic method of travelling wave solution for El Niño tropic sea--air coupled oscillator
Mo Jia-Qi(莫嘉琪) and Lin Wan-Tao(林万涛) . Chin. Phys. B, 2008, 17(3): 743-746.
[13] Study on an extended Boussinesq equation
Chen Chun-Li(陈春丽), Zhang Jin E(张近), and Li Yi-Shen(李翊神). Chin. Phys. B, 2007, 16(8): 2167-2179.
[14] The sea--air oscillator model of decadal variations in subtropical cells and equatorial Pacific SST
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Lin Yi-Hua(林一骅). Chin. Phys. B, 2007, 16(7): 1908-1911.
[15] Variational iteration method for solving perturbed mechanism of western boundary undercurrents in the Pacific
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Wang Hui(王辉) . Chin. Phys. B, 2007, 16(4): 951-954.
No Suggested Reading articles found!