Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 026201    DOI: 10.1088/1674-1056/19/2/026201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Friction phenomena in a two-dimensional Frenkel-Kontorova model

Lin Mai-Mai(林麦麦)a), Duan Wen-Shan(段文山)a), and Chen Jian-Min(陈建敏)b)
a Department of Physics, Northwest Normal University, Lanzhou 730070, China; b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract  By using the molecular dynamic simulation method with a fourth-order Runge--Kutta algorithm, a two-dimensional dc- and ac-driven Frenkel--Kontorova (FK) model with a square symmetry substrate potential for a square lattice layer has been investigated in this paper. For this system, the effects of many different parameters on the average velocity and the static friction force have been studied. It is found that not only the amplitude and frequency of ac-driven force, but also the direction of the external driving force and the misfit angle between two layers have some strong influences on the static friction force. It can be concluded that the superlubricity phenomenon appears easily with a larger ac amplitude and lower ac frequency for some special direction of the external force and misfit angle.
Keywords:  Frenkel--Kontorova model      static friction force      Runge--Kutta method  
Received:  12 June 2009      Revised:  10 July 2009      Accepted manuscript online: 
PACS:  62.20.Qp (Friction, tribology, and hardness)  
  81.40.Pq (Friction, lubrication, and wear)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grand Nos. 50575217, 10875098 and 50421502), and the Natural Science Foundation of Northwest Normal University (Grant Nos. NWNU-KJCXGC-03-17 and NWNU-KJCXGC-03-48).

Cite this article: 

Lin Mai-Mai(林麦麦), Duan Wen-Shan(段文山), and Chen Jian-Min(陈建敏) Friction phenomena in a two-dimensional Frenkel-Kontorova model 2010 Chin. Phys. B 19 026201

[1] Braun O and Kivshar Y S 1998 Phys. Rep. 306 1
[2] Hu B and Teki? J 2007 Appl. Phys. Lett. 90 102119
[3] Hu B, Yang L and Zhang Y 2006 Phys. Rev. Lett. 97 124302
[4] Wang C L, Duan W S, Hong X R and Chen J M 2008 Appl. Phys. Lett. 95 153116
[5] Hu B and Teki? J 2005 Phys. Rev. E 72 056602
[6] Teki? J, Braun O M and Hu B 2005 Phys. Rev. E 71 026104
[7] Hu B and Yang L 2005 Chaos 15 015119
[8] Li H B, Zhao H and Wang Y H 2005 Phys. Lett. A 2 98 361
[9] Zheng Z G, Hu B and Hu G 1998 Phys. Rev. B 58 9
[10] Huang P and Xu Z M 2006 Acta Phys. Sin. 55 2427 (in Chinese)
[11] Ding L Y, Gong Z L and Huang P 2008 Acta Phys. Sin. 57 6500 (in Chinese)
[12] Wen S Z, Xiong Y, Zhen X J and Zhang X H 2009 Acta Phys. Sin. 581826 (in Chinese)
[13] Braun O and Kivshar Yu S 2003 The Frenkel--Kontorova Model (Berlin: Springer)
[14] Braun O M, Bishop A R and Roder J 1997 Phys. Rev. Lett. 79 3692
[15] Braun O M, Zhang H, Hu B and Tekí c J 2003 Phys. Rev. E 67 066602
[16] Hirano M 2003 Wear 254932
[17] Li H, Xu T, Wang C, Chen J, Zhou H and Liu H 2007 Tribology International 40 132
[18] Floría L M and Mazo J J 1996 Adv. Phys. 45 505
[19] Falo F, Florí a L M, Martí nez P J and Mazo J J 1993 Phys. Rev. B 48 7434
[20] Florí a L M and Falo F 1992 Phys. Rev. Lett. 68 2713
[21] Hu B and Teki? J 2007 Phys. Rev. E 75056608
[22] Teki? J and Hu B 2008 Phys. Rev. B 78 104305
[23] Hirano M, Shinjo K, Kaneko R and Murata Y 1997 Phys. Rev. Lett. 78 1448
[24] Dienwiehel M, Verhoeven G S, Pradeep N, Frenken J W M, Heimberg J A and Zandbergen H W 2004 Phys. Rev. Lett. 92 126101
[25] Persson B N J 1998 Sliding Friction: Physical Principles and Applications (Berlin: Springer-Verlag)
[26] Persson B N J 1999 Surf. Sci. Rep. 33 83
[1] The dynamic characters of excitations in aone-dimensional Frenkel--Kontorova model
Gao Xiu-Yun(高秀云), Hong Xue-Ren(洪学仁), Wang Cang-Long(王苍龙), and Duan Wen-Shan(段文山). Chin. Phys. B, 2008, 17(9): 3378-3386.
[2] Structure-preserving algorithms for the Duffing equation
Gang Tie-Qiang(冮铁强), Mei Feng-Xiang(梅凤翔), and Xie Jia-Fang(解加芳). Chin. Phys. B, 2008, 17(10): 3623-3628.
[3] Nonlinear dynamics in sliding processes:the single-particle case
Yuan Xiao-Ping (袁晓平), Chen Hong-Bin (陈宏斌), Zheng Zhi-Gang (郑志刚). Chin. Phys. B, 2006, 15(7): 1464-1470.
No Suggested Reading articles found!