|
|
Impulsive control of stochastic system under the sense of stochastic asymptotical stability |
Niu Yu-Jun(牛玉俊)† and Ma Ge(马戈) |
Department of Applied Math, Nanyang Institute of Technology, Nanyang 473004, China |
|
|
Abstract This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lü system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.
|
Received: 25 September 2009
Revised: 07 May 2010
Accepted manuscript online:
|
PACS:
|
02.30.Hq
|
(Ordinary differential equations)
|
|
02.50.Ey
|
(Stochastic processes)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10902085). |
Cite this article:
Niu Yu-Jun(牛玉俊) and Ma Ge(马戈) Impulsive control of stochastic system under the sense of stochastic asymptotical stability 2010 Chin. Phys. B 19 110511
|
[1] |
Hu M F, Yang Y Q and Xu Z Y 2008 wxPhys. Lett. A 372 3228
|
[2] |
Lakshmikantham V, Bainov D D and Simeonov P S 1989 wxTheory of Impulsive Differential Equations (Singapore; World Scientific)
|
[3] |
Yang T 2001 wxImpulsive Control Theory (Berlin: Springer)
|
[4] |
Yang T, Yang L B and Yang C M 1997 wxPhys. Lett. A 226 349
|
[5] |
Yang T, Yang L B and Yang C M 1997 wxPhys. D 110 18
|
[6] |
Yang T, Yang L B and Yang C M 1997 wxPhys. Lett. A 232 356
|
[7] |
Soliman A A 2002 wxAppl. Math. Comput. 133 105
|
[8] |
Panas A I , Yang T and Chua L O 1998 wxInt. J. Bifur. Chaos 3 639
|
[9] |
Jiao J J, Chen L S and Li L M 2008 wxMath. Anal. Appl. 337 458
|
[10] |
Chen L L, Sun J T and Wu Q D 2004 wxChaos, Solitons and Fractals 21 135
|
[11] |
Mohamad S and Gopalsamy K 2009 wxCommun. Nonlinear. Sci. Numer. Simulat. 14 27
|
[12] |
Li K and Lai C H 2008 wxPhys. Lett. A 372 1601
|
[13] |
Liu X W, Huang Q Z, Gao X and Shao S Q 2007 wxChin. Phys. 16 2272
|
[14] |
Zhang H G, Fu J, Ma T D and Tong S C 2009 wxChin. Phys. B 18 969
|
[15] |
Li Y, Liao X F, Li C D and Chen G 2006 wxChin. Phys. 15 2890
|
[16] |
Wu S J, Han D and Meng X Z 2004 wxAppl. Math. Comput. 152 505
|
[17] |
Yang Z G, Xu D Y and Li X 2006 wxPhys. Lett. A 359 129
|
[18] |
Yang J, Zhong S M and Luo W P 2009 wxJ. Comput. Appl. Math. 216 474
|
[19] |
Dong Y W and Sun J T 2005 wxChaos, Solitons and Fractals 26 1491
|
[20] |
Zhang H, Guan Z H and Feng G 2008 wxAutomatica 44 1004
|
[21] |
Wang Q K and Song Z D 2008 wxPhys. A387 3314
|
[22] |
Li C G, Chen L N and Kazuyuki A 2008 wxChaos 18 023132.
|
[23] |
Niu Y J, Xu W, Rong H W, Wang L and Feng J Q 2009 wxActa Phys. Sin. 58 2983 (in Chinese)
|
[24] |
Niu Y J, Xu W and Lu Z Y 2010 wxChin. Phys. B 19 030512
|
[25] |
Hu X D and Yu Z M 1980 wxJ. Nanjing University 3 1
|
[26] |
Hu X D and Yu Z M 1982 wxActa. Math. Sin. 25 427 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|