Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(7): 2981-2987    DOI: 10.1088/1674-1056/18/7/060
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dissipationless spin-Hall current contribution in the extrinsic spin-Hall effect

Yan Yu-Zhen(颜玉珍), Li Hui-Wu(李辉武), and Hu Liang-Bin(胡梁宾)
Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China
Abstract  This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect, which originates from the spin-orbit coupling induced by the applied external electric field itself that drives the extrinsic spin-Hall effect in a nonmagnetic semiconductor (or metal). By assuming that the impurity density is in a moderate range such that the total scattering potential due to all randomly distributed impurities is a smooth function of the space coordinate, it is shown that this dissipationless contribution shall be of the same orders of magnitude as the usual extrinsic contribution from spin-orbit dependent impurity scatterings (or may even be larger than the latter one). The theoretical results obtained are in good agreement with recent relevant experimental results.
Keywords:  extrinsic spin-Hall effect      spin-orbit coupling induced by external electric fields      dissipationless spin current  
Received:  22 December 2008      Revised:  20 January 2009      Accepted manuscript online: 
PACS:  72.20.My (Galvanomagnetic and other magnetotransport effects)  
  72.80.Ey (III-V and II-VI semiconductors)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  61.72.up (Other materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10874049), the State Key Program for Basic Research of China (Grant No 2007CB925204) and the Natural Science Foundation of Guangdong Province of China (Grant No 07005834).

Cite this article: 

Yan Yu-Zhen(颜玉珍), Li Hui-Wu(李辉武), and Hu Liang-Bin(胡梁宾) Dissipationless spin-Hall current contribution in the extrinsic spin-Hall effect 2009 Chin. Phys. B 18 2981

[1] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[2] Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony
Fangdong Tang(汤方栋), Qianheng Du(杜乾衡), Cedomir Petrovic, Wei Zhang(张威), Mingquan He(何明全), Liyuan Zhang(张立源). Chin. Phys. B, 2019, 28(3): 037104.
[3] Growth and characterization of single crystals of the quaternary TlGaSeS compound
S. R. Alharbi. Chin. Phys. B, 2013, 22(5): 058105.
[4] The quantum Hall's effect: A quantum electrodynamic phenomenon
A. I. Arbab. Chin. Phys. B, 2012, 21(12): 127301.
[5] First-principles study and electronic structures of Mn-doped ultrathin ZnO nanofilms
E. Salmani, A. Benyoussef, H. Ez-Zahraouy, E. H. Saidi, O. Mounkachi. Chin. Phys. B, 2012, 21(10): 106601.
[6] Magnetic properties of Mn-doped GaN with defects: ab-initio calculations
E. Salmani, A. Benyoussef, H. Ez-Zahraouy, and E.H. Saidi . Chin. Phys. B, 2011, 20(8): 086601.
[7] Magnetotransport through an Aharonov-Bohm ring with parallel double quantum dots coupled to ferromagnetic leads
Wu Shao-Quan(吴绍全), Hou Tao(侯涛), Zhao Guo-Ping(赵国平), and Yu Wan-Lun(余万伦). Chin. Phys. B, 2010, 19(4): 047202.
[8] Influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a Rashba two-dimensional electron gas
Yan Yu-Zhen(颜玉珍) and Hu Liang-Bin(胡梁宾). Chin. Phys. B, 2010, 19(4): 047203.
[9] Spin-dependent transport for a two-dimensional electron gas with magnetic barriers
Wang Hai-Yan(王海艳), Duan Zi-Gang(段子刚), Liao Wen-Hu(廖文虎), and Zhou Guang-Hui(周光辉). Chin. Phys. B, 2010, 19(3): 037301.
[10] Orbital magnetization in semiconductors
Fang Cheng(方诚), Wang Zhi-Gang(王志刚), Li Shu-Shen(李树深), and Zhang Ping(张平). Chin. Phys. B, 2009, 18(12): 5431-5436.
[11] Degradation mechanism of two-dimensional electron gas density in high Al-content AlGaN/GaN heterostructures
Zhang Jin-Cheng(张进成), Zheng Peng-Tian(郑鹏天), Zhang Juan(张娟), Xu Zhi-Hao(许志豪), and Hao Yue(郝跃). Chin. Phys. B, 2009, 18(7): 2998-3001.
[12] The electrical transport behavior of Zn-treated Zn1-xMnxO bulks
Peng Xian-De(彭先德), Zhu Tao(朱涛), Wang Fang-Wei(王芳卫), Huang Wan-Guo(黄万国), and Cheng Zhao-Hua(成昭华). Chin. Phys. B, 2009, 18(6): 2576-2581.
[13] Spin-filtering junctions with double ferroelectric barriers
Ju Yan(鞠艳) and Xing Ding-Yu(邢定钰). Chin. Phys. B, 2009, 18(6): 2205-2208.
[14] Electronic structures and magnetoelectric properties of tetragonal BaFeO3: an ab initio density functional theory study
Feng Hong-Jian(冯宏剑) and Liu Fa-Min(刘发民). Chin. Phys. B, 2008, 17(5): 1874-1880.
[15] Magnetotransport in a dual waveguide coupled by a finite barrier: Energy filter and directional coupler
Xie Yue-E(谢月娥), Chen Yuan-Ping(陈元平), and Yan Xiao-Hong(颜晓红). Chin. Phys. B, 2007, 16(10): 3087-3092.
No Suggested Reading articles found!