Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(8): 3035-3039    DOI: 10.1088/1674-1056/17/8/045
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modelling of spreading process: effect from hydrogen bonds

Li Xin(李欣)a), Hu Yuan-Zhong(胡元中)b), and Jiang Lan(姜澜)a)
a Department of Mechanical and Automation Engineering, 3rd School Beijing Institute of Technology, Beijing 100081, China; b The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Abstract  Lubricant spreading on solid substrates has drawn considerable attention not only for the microscopic wetting theory but also for the dramatic application in head-disk interface of magnetic storage drive systems. Molecular dynamic simulation based on a coarse-grained bead-spring model has been used to study such a spreading process. The spreading profiles indicate that the hydrogen bonds among lubricant molecules and the hydrogen bonds between lubricant molecules and polar atoms of solid substrates will complicate the spreading process in a tremendous degree. The hydrogen bonds among lubricant molecules will strengthen the lubricant combination intensity, which may hinder most molecules from flowing down to the substrates and diffusing along the substrates. And the hydrogen bonds between lubricant molecules and polar atoms of solid substrates will confine the lubricant molecules around polar atoms, which may hinder the molecules from diffusing along the substrates and cause precursor film to vanish.
Keywords:  perfluoropolyether      molecular dynamic simulation      thin film lubrication      spreading  
Received:  19 February 2008      Revised:  02 April 2008      Accepted manuscript online: 
PACS:  68.08.Bc (Wetting)  
  68.35.Fx (Diffusion; interface formation)  
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20060003025), the Science Foundation for Post Doctoral Research from the Ministry of Science and Technology of China (Grant No 20070420017), the 111 Project (Grant No B08043) and the National Natural Science Foundation of China (Grant No 50705009).

Cite this article: 

Li Xin(李欣), Hu Yuan-Zhong(胡元中), and Jiang Lan(姜澜) Modelling of spreading process: effect from hydrogen bonds 2008 Chin. Phys. B 17 3035

[1] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[2] Influence fast or later: Two types of influencers in social networks
Fang Zhou(周方), Chang Su(苏畅), Shuqi Xu(徐舒琪), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2022, 31(6): 068901.
[3] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[4] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[5] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[6] Atomistic simulations of the lubricative mechanism of a nano-alkane lubricating film between two layers of Cu-Zn alloy
Jing Li(李京), Peng Zhu(朱鹏), Yuan-Yuan Sheng(盛圆圆), Lin Liu(刘麟), and Yong Luo(罗勇). Chin. Phys. B, 2021, 30(8): 080205.
[7] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[8] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[9] Asynchronism of the spreading dynamics underlying the bursty pattern
Tong Wang(王童), Ming-Yang Zhou(周明洋), Zhong-Qian Fu(付忠谦). Chin. Phys. B, 2020, 29(5): 058901.
[10] Hexagonal arrangement of phospholipids in bilayer membranes
Xiao-Wei Chen(陈晓伟), Ming-Xia Yuan(元明霞), Han Guo(郭晗), Zhi Zhu(朱智). Chin. Phys. B, 2020, 29(3): 030505.
[11] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[12] Shortest path of temporal networks: An information spreading-based approach
Yixin Ma(马一心), Xiaoyu Xue(薛潇雨), Meng Cai(蔡萌), and Wei Wang(王伟). Chin. Phys. B, 2020, 29(12): 128902.
[13] Structural model of substitutional sulfur in diamond
Hongyu Yu(于洪雨), Nan Gao(高楠), Hongdong Li(李红东), Xuri Huang(黄旭日), Defang Duan(段德芳), Kuo Bao(包括), Mingfeng Zhu(朱明枫), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(8): 088102.
[14] Dynamics and control strategies of infectious disease under different scenarios on hierarchical geographical networks
Xun Ma(马勋), Ya-Peng Cui(崔亚鹏), Xiao-Li Yan(闫小丽), Shun-Jiang Ni(倪顺江), Shi-Fei Shen(申世飞). Chin. Phys. B, 2019, 28(12): 128901.
[15] Efficiency-enhanced AlGaInP light-emitting diodes using transparent plasmonic silver nanowires
Xia Guo(郭霞), Qiao-Li Liu(刘巧莉), Hui-Jun Tian(田慧军), Chun-Wei Guo(郭春威), Chong Li(李冲), An-Qi Hu(胡安琪), Xiao-Ying He(何晓颖), Hua Wu(武华). Chin. Phys. B, 2018, 27(9): 098502.
No Suggested Reading articles found!