Please wait a minute...
Chinese Physics, 2000, Vol. 9(11): 801-804    DOI: 10.1088/1009-1963/9/11/001
GENERAL   Next  

EFFECTS OF NON-CONSERVATIVE FORCES ON LIE SYMMETRIES AND CONSERVED QUANTITIES OF A LAGRANGE SYSTEM

Zhang Rui-chao (张睿超), Chen Xiang-wei (陈向炜), Mei Feng-xiang (梅凤翔)
Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China
Abstract  Non-conservative forces are exerted on a Lagrange system. Their effects on Lie symmetries, structure equation and conserved quantities of the system are studied. It can be seen that some Lie symmetries disappear and some new Lie symmetries emerge. Under certain conditions, some Lie symmetries will still remain present.
Keywords:  analytical mechanics      Lagrange system      non-conserved force      Lie symmetry      conserved quantity  
Received:  18 May 2000      Revised:  30 June 2000      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the National Natural Science Foundation(19972010) and the Doctoral Programme Foundation of Institution of Higher Education of China.

Cite this article: 

Zhang Rui-chao (张睿超), Chen Xiang-wei (陈向炜), Mei Feng-xiang (梅凤翔) EFFECTS OF NON-CONSERVATIVE FORCES ON LIE SYMMETRIES AND CONSERVED QUANTITIES OF A LAGRANGE SYSTEM 2000 Chinese Physics 9 801

[1] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[2] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[3] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[4] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[5] Cooperatively surrounding control for multiple Euler-Lagrange systems subjected to uncertain dynamics and input constraints
Liang-Ming Chen(陈亮名), Yue-Yong Lv(吕跃勇), Chuan-Jiang Li(李传江), Guang-Fu Ma(马广富). Chin. Phys. B, 2016, 25(12): 128701.
[6] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[7] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[8] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[9] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[10] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[11] Lie symmetries and exact solutions for a short-wave model
Chen Ai-Yong (陈爱永), Zhang Li-Na (章丽娜), Wen Shuang-Quan (温双全). Chin. Phys. B, 2013, 22(4): 040510.
[12] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[13] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng (王鹏), Xue Yun (薛纭), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2013, 22(10): 104503.
[14] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong (陈蓉), Xu Xue-Jun (许学军). Chin. Phys. B, 2012, 21(9): 094501.
[15] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
No Suggested Reading articles found!