Abstract A direct way to construct integrable couplings for discrete systems is presented by use of two semi-direct sum Lie algebras. As their applications, the discrete integrable couplings associated with modified Korteweg--de Vries (m-KdV) lattice and two hierarchies of discrete soliton equations are developed. It is also indicated that the study of integrable couplings using semi-direct sums of Lie algebras is an important step towards the complete classification of integrable couplings.
Received: 08 August 2006
Revised: 18 December 2006
Accepted manuscript online:
Dong Huan-He(董焕河) Discrete integrable couplings associated with modified Korteweg--de Vries lattice and two hierarchies of discrete soliton equations 2007 Chinese Physics 16 1177
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.