|
Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华)
2021 (7):
77305-077305.
doi: 10.1088/1674-1056/abe117
The performance degradation of gate-recessed metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) is compared with that of conventional high electron mobility transistor (HEMT) under direct current (DC) stress, and the degradation mechanism is studied. Under the channel hot electron injection stress, the degradation of gate-recessed MOS-HEMT is more serious than that of conventional HEMT devices due to the combined effect of traps in the barrier layer, and that under the gate dielectric of the device. The threshold voltage of conventional HEMT shows a reduction under the gate electron injection stress, which is caused by the barrier layer traps trapping the injected electrons and releasing them into the channel. However, because of defects under gate dielectrics which can trap the electrons injected from gate and deplete part of the channel, the threshold voltage of gate-recessed MOS-HEMT first increases and then decreases as the conventional HEMT. The saturation phenomenon of threshold voltage degradation under high field stress verifies the existence of threshold voltage reduction effect caused by gate electron injection.
参考文献 |
相关文章 |
计量指标
|