中国物理B ›› 2021, Vol. 30 ›› Issue (7): 70310-070310.doi: 10.1088/1674-1056/abff2b
所属专题: SPECIAL TOPIC — Quantum computation and quantum simulation
Tianqi Huang(黄天棋), Wen Zheng(郑文), Shuqing Song(宋树清), Yuqian Dong(董煜倩), Xiaopei Yang(杨晓沛), Zhikun Han(韩志坤), Dong Lan(兰栋), and Xinsheng Tan(谭新生)†
Tianqi Huang(黄天棋), Wen Zheng(郑文), Shuqing Song(宋树清), Yuqian Dong(董煜倩), Xiaopei Yang(杨晓沛), Zhikun Han(韩志坤), Dong Lan(兰栋), and Xinsheng Tan(谭新生)†
摘要: We demonstrate an active reset protocol in a superconducting quantum circuit. The thermal population on the excited state of a transmon qubit is reduced through driving the transitions between the qubit and an ancillary qubit. Furthermore, we investigate the efficiency of this approach at different temperatures. The result shows that population in the first excited state can be dropped from 7% to 2.55% in 27 ns at 30 mK. The efficiency improves as the temperature increases. Compared to other schemes, our proposal alleviates the requirements for measurement procedure and equipment. With the increase of qubit integration, the fast reset technique holds the promise of improving the fidelity of quantum control.
中图分类号: (Quantum information)