›› 2015, Vol. 24 ›› Issue (4): 47304-047304.doi: 10.1088/1674-1056/24/4/047304
• CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES • 上一篇 下一篇
李鹏程, 罗小蓉, 罗尹春, 周坤, 石先龙, 张彦辉, 吕孟山
Li Peng-Cheng (李鹏程), Luo Xiao-Rong (罗小蓉), Luo Yin-Chun (罗尹春), Zhou Kun (周坤), Shi Xian-Long (石先龙), Zhang Yan-Hui (张彦辉), Lv Meng-Shan (吕孟山)
摘要: An ultra-low specific on-resistance (Ron,sp) oxide trench-type silicon-on-insulator (SOI) lateral double-diffusion metal-oxide semiconductor (LDMOS) with an enhanced breakdown voltage (BV) is proposed and investigated by simulation. There are two key features in the proposed device: one is a U-shaped gate around the oxide trench, which extends from source to drain (UG LDMOS); the other is an N pillar and P pillar located in the trench sidewall. In the on-state, electrons accumulate along the U-shaped gate, providing a continuous low resistance current path from source to drain. The Ron,sp is thus greatly reduced and almost independent of the drift region doping concentration. In the off-state, the N and P pillars not only enhance the electric field (E-field) strength of the trench oxide, but also improve the E-field distribution in the drift region, leading to a significant improvement in the BV. The BV of 662 V and Ron,sp of 12.4 mΩ · cm2 are achieved for the proposed UG LDMOS. The BV is increased by 88.6% and the Ron,sp is reduced by 96.4%, compared with those of the conventional trench LDMOS (CT LDMOS), realizing the state-of-the-art trade-off between BV and Ron,sp.
中图分类号: (Semiconductor-insulator-semiconductor structures)