中国物理B ›› 2023, Vol. 32 ›› Issue (3): 38501-038501.doi: 10.1088/1674-1056/ac873d
Jin-Ping Zhang(张金平)1,2,†, Hao-Nan Deng(邓浩楠)1, Rong-Rong Zhu(朱镕镕)1, Ze-Hong Li(李泽宏)1, and Bo Zhang(张波)1
Jin-Ping Zhang(张金平)1,2,†, Hao-Nan Deng(邓浩楠)1, Rong-Rong Zhu(朱镕镕)1, Ze-Hong Li(李泽宏)1, and Bo Zhang(张波)1
摘要: We propose a novel high performance carrier stored trench bipolar transistor (CSTBT) with dual shielding structure (DSS-CSTBT). The proposed DSS-CSTBT features a double trench structure with different trench profiles in the surface, in which a shallow gate trench is shielded by a deep emitter trench and a thick oxide layer under it. Compared with the conventional CSTBT (con-CSTBT), the proposed DSS-CSTBT not only alleviates the negative impact of the shallow gate trench and highly doped CS layer on the breakdown voltage (BV), but also well reduces the gate-collector capacitance $C_{\rm GC}$, gate charge $Q_{\rm G}$, and turn-off loss $E_{\rm OFF}$ of the device. Furthermore, lower turn-on loss $E_{\rm ON}$ and gate drive loss $E_{\rm DR}$ are also obtained. Simulation results show that with the same CS layer doping concentration $N_{\rm CS}=1.5\times10^{16 }$ cm$^{-3}$, the BV increases from 1312 V of the con-CSTBT to 1423 V of the proposed DSS-CSTBT with oxide layer thickness under gate ($T_{\rm og2}$) of 1 μm. Moreover, compared with the con-CSTBT, the $C_{\rm GC}$ at $V_{\rm CE} $ of 25 V and miller plateau charge ($Q_{\rm GC}$) for the proposed DSS-CSTBT with $T_{\rm og2}$ of 1 μm are reduced by 79.4% and 74.3%, respectively. With the $V_{\rm GE} $ increases from 0 V to 15 V, the total $Q_{\rm G}$ for the proposed DSS-CSTBT with $T_{\rm og2}$ of 1 μm is reduced by 49.5%. As a result, at the same on-state voltage drop ($V_{\rm CEON}$) of 1.55 V, the $E_{\rm ON}$ and $E_{\rm OFF}$ are reduced from 20.3 mJ/cm$^{2}$ and 19.3 mJ/cm$^{2}$ for the con-CSTBT to 8.2 mJ/cm$^{2}$ and 9.7 mJ/cm$^{2}$ for the proposed DSS-CSTBT with $T_{\rm og2}$ of 1 μm, respectively. The proposed DSS-CSTBT not only significantly improves the trade-off relationship between the $V_{\rm CEON}$ and $E_{\rm OFF }$ but also greatly reduces the $E_{\rm ON}$.
中图分类号: (Semiconductor-device characterization, design, and modeling)