Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 050301    DOI: 10.1088/1674-1056/25/5/050301
GENERAL Prev   Next  

Tunable two-axis spin model and spin squeezing in two cavities

Lixian Yu(俞立先)1, Caifeng Li(李彩凤)2,3, Jingtao Fan(樊景涛)2, Gang Chen(陈刚)2,5,, Tian-Cai Zhang(张天才)4,5, Suotang Jia(贾锁堂)2,5
1. Department of Physics, Shaoxing University, Shaoxing 312000, China;
2. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser spectroscopy, Shanxi University, Taiyuan 030006, China;
3. Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China;
4. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
5. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  

Multi-mode cavities have now attracted much attention both experimentally and theoretically. In this paper, inspired by recent experiments of cavity-assisted Raman transitions, we realize a two-axis spin Hamiltonian H=q(Jx2+χJy2)+ω0Jz in two cavities. This realized Hamiltonian has a distinct property that all parameters can be tuned independently. For proper parameters, the well-studied one- and two-axis twisting Hamiltonians are recovered, and the scaling of N-1 of the maximal squeezing factor can occur naturally. On the other hand, in the two-axis twisting Hamiltonian, spin squeezing is usually reduced when increasing the atomic resonant frequency ω0. Surprisingly, we find that by combining with the dimensionless parameter χ(>-1), this atomic resonant frequency ω0 can enhance spin squeezing greatly. These results are beneficial for achieving the required spin squeezing in experiments.

Keywords:  two-axis spin model      spin squeezing      two cavities  
Received:  14 November 2015      Revised:  06 January 2016      Accepted manuscript online: 
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11422433, 11447028, 61227902, 11434007, and 61275211), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY13A040001), and the Scientific Research Foundation of the Education Department of Zhejiang Province, China (Grant No. Y201122352).

Corresponding Authors:  Gang Chen     E-mail:  chengang971@163.com

Cite this article: 

Lixian Yu(俞立先), Caifeng Li(李彩凤), Jingtao Fan(樊景涛), Gang Chen(陈刚), Tian-Cai Zhang(张天才), Suotang Jia(贾锁堂) Tunable two-axis spin model and spin squeezing in two cavities 2016 Chin. Phys. B 25 050301

[1] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[2] Ma J, Wang X, Sun C P, et al. 2011 Phys. Rep. 509 89
[3] Robins N P, Altin P A, Debs J E, et al. 2013 Phys. Rep. 529 265
[4] Duan L M, Sorensen A, Cirac J I, et al. 2000 Phys. Rev. Lett. 85 5643
[5] Sørensen A, Duan L M, Cirac J I, et al. 2001 Nature 409 63
[6] Santarelli G, Laurent P, Lemonde P, et al. 1999 Phys. Rev. Lett. 82 4619
[7] Hammerer K, Sorensen A S and Polzik E S 2010 Rev. Mod. Phys. 82 1041
[8] Helmerson K and You L 2001 Phys. Rev. Lett. 87 170402
[9] Bouchoule I and Mølmer K 2002 Phys. Rev. A 65 041803
[10] Zhang M, Helmerson K and You L 2003 Phys. Rev. A 68 043622
[11] André A and Lukin M D 2002 Phys. Rev. A 65 053819
[12] André A, Duan L M and Lukin M D 2002 Phys. Rev. Lett. 88 243602
[13] Thomsen L K, Mancini S and Wiseman H M 2002 J. Phys. B 35 4937
[14] Ng H T, Law C K and Leung P T 2003 Phys. Rev. A 68 013604
[15] Cappellaro P and Lukin M D 2009 Phys. Rev. A 80 032311
[16] Liu Y C, Xu Z F, Jin G R, et al. 2011 Phys. Rev. Lett. 107 013601
[17] Shen C and Duan L M 2013 Phys. Rev. A 87 051801
[18] Zhang J Y, Zhou X F, Guo G C, et al. 2014 Phys. Rev. A 90 013604
[19] Huang W, Zhang Y L, Zou C L, et al. 2015 Phys. Rev. A 91 043642
[20] Deb R N, Abdalla M Sebawe, Hassan S S and Nayak N 2006 Phys. Rev. A 73 053817
[21] Nielsen A E B and Molmer K 2008 Phys. Rev. A 77 063811
[22] Schleier-Smith M H, Leroux I D and Vuletić V 2010 Phys. Rev. A 81 021804
[23] Leroux I D, Schleier-Smith M H and Vuletić V 2010 Phys. Rev. Lett. 104 073602
[24] Chen Z, Bohnet J G, Sankar S R, et al. 2011 Phys. Rev. Lett. 106 133601
[25] Dalla Torre, Otterbach J, Demler E, Vuletić V, et al. 2013 Phys. Rev. Lett. 110 120402
[26] Chen Z, Bohnet J G, Weiner J M, et al. 2014 Phys. Rev. A 89 043837
[27] Yu L, Fan J, Zhu S, et al. 2014 Phys. Rev. A 89 023838
[28] Auccaise R, Araujo-Ferreira A G, Sarthour R S, et al. 2015 Phys. Rev. Lett. 114 043604
[29] Huang X Y, Xiang Y, Sun F X, et al. 2015 Acta Phys. Sin. 64 160304 (in Chinese)
[30] Zhong W, Liu J, Ma J, et al. 2014 Chin. Phys. B 23 060302
[31] Messina A, Maniscalco S and Napoli A 2003 J. Mod. Phys. 50 1
[32] Mariantoni M, Deppe F, Marx A, Gross R, et al. 2008 Phys. Rev. B 78 104508
[33] Mariantoni M, Wang H, Bialczak R C, et al. 2011 Nat. Phys. 7 287
[34] Egger D J and Wilhelm F K 2013 Phys. Rev. Lett. 111 163601
[35] Wickenbrock A, Hemmerling M, Robb G R M, et al. 2013 Phys. Rev. A 87 043817
[36] Krimer D O, Liertzer M, Rotter S, et al. 2014 Phys. Rev. A 89 033820
[37] McKay D C, Naik R, Reinhold P, et al. 2015 Phys. Rev. Lett. 114 080501
[38] Larson J and Levin S 2009 Phys. Rev. Lett. 103 013602
[39] Larson J 2010 Phys. Rev. A 81 051803
[40] Gopalakrishnan S, Lev B L and Goldbart P M 2009 Nat. Phys. 5 845
[41] Gopalakrishnan S, Lev B L and Goldbart P M 2010 Phys. Rev. A 82 043612
[42] Gopalakrishnan S, Lev B L and Goldbart P M 2011 Phys. Rev. Lett. 107 277201
[43] Strack P and Sachdev S 2011 Phys. Rev. Lett. 107 277202
[44] Buchhold M, Strack P, Sachdev S, et al. 2013 Phys. Rev. A 87 063622
[45] Andreanov A and Müller M 2012 Phys. Rev. Lett. 109 177201
[46] Fan J, Yang Z, Zhang Y, et al. 2014 Phys. Rev. A 89 023812
[47] Guzmán R, Retamal J C, Solano E, et al. 2006 Phys. Rev. Lett. 96 010502
[48] Parkins A S, Solano E and Cirac J I 2006 Phys. Rev. Lett. 96 053602
[49] Baumann K, Guerlin C, Brennecke F, et al. 2010 Nature 464 1301
[50] Baden M P, Arnold K J, Grimsmo A L, et al. 2014 Phys. Rev. Lett. 113 020408
[51] Dimer F, Estienne B, Parkins A S, et al. 2007 Phys. Rev. A 75 013804
[52] Lipkin H J, Meshkov N and Glick N 1965 Nucl. Phys. A 62 188
[53] Lipkin H J, Meshkov N and Glick N 1965 Nucl. Phys. A 62 199
[54] Lipkin H J, Meshkov N and Glick N 1965 Nucl. Phys. A 62 211
[55] Dusuel S and Vidal J 2004 Phys. Rev. Lett. 93 237204
[56] Ribeiro P, Vidal J and Mosseri R 2007 Phys. Rev. Lett. 99 050402
[57] Orús R, Dusuel S and Vidal J 2008 Phys. Rev. Lett. 101 025701
[58] Chen G, Liang J Q and Jia S 2009 Opt. Exp. 17 19682
[59] Law C K, Ng H T and Leung P T 2011 Phys. Rev. A 63 055601
[60] Vidal J, Palacios G and Mosseri R 2004 Phys. Rev. A 69 022107
[61] Vidal J, Mosseri R, and Dukelsky J 2004 Phys. Rev. A 69 054101
[62] Morrison S and Parkins A S 2008 Phys. Rev. Lett. 100 040403
[63] Chen G, Wang X, Liang J Q, et al. 2008 Phys. Rev. A 78 023634
[64] Wineland D J, Bollinger J J, Itano W M, et al. 1992 Phys. Rev. A 46 R6797
[1] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[2] Spin squeezing in Dicke-class of states with non-orthogonal spinors
K S Akhilesh, K S Mallesh, Sudha, Praveen G Hegde. Chin. Phys. B, 2019, 28(6): 060302.
[3] Quantum Fisher information and spin squeezing in one-axis twisting model
Zhong Wei (钟伟), Liu Jing (刘京), Ma Jian (马健), Wang Xiao-Guang (王晓光). Chin. Phys. B, 2014, 23(6): 060302.
[4] Improved frequency standard via weighted graph states
Xue Peng (薛鹏). Chin. Phys. B, 2012, 21(10): 100306.
No Suggested Reading articles found!