Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048101    DOI: 10.1088/1674-1056/abd750
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time

Yan-Yan Feng(冯艳艳)1,2, Xiao-Di Niu(牛潇迪)1, Yong-Hui Xu (徐永辉)1, and Wen Yang(杨文)1,2,†
1 Department of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; 2 Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Department of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
Abstract  The adsorption of CO2 on MgAl layered double hydroxides (MgAl-LDHs) based adsorbents has been an effective way to capture CO2, however the adsorption capacity was hampered due to the pore structure and the dispersibility of adsorption active sites. To address the problem, we investigate the effect of intercalated anion and alkaline etching time on the structure, morphology and CO2 uptake performances of MgAl-LDHs. MgAl-LDHs are synthesized by the one-pot hydrothermal method, followed by alkaline etching of NaOH, and characterized by x-ray diffraction, N2 adsorption, scanning electron microscopy and Fourier transform infrared spectroscopy. The CO2 adsorption tests of the samples are performed on a thermogravimetric analyzer, and the adsorption data are fitted by the first-order, pseudo-second-order and Elovich models, respectively. The results demonstrate that among the three intercalated samples, MgAl(Cl) using chloride salts as precursors possesses the highest adsorption capacity of CO2, owing to high crystallinity and porous structure, while MgAl(Ac) employing acetate salts as precursors displays the lowest CO2 uptake because of poor crystallinity, disorderly stacked structure and unsatisfactory pore structure. With regard to alkaline etching, the surface of the treated MgAl(Cl) is partly corroded, thus the specific surface area and pore volume increase, which is conducive to the exposure of adsorption active sites. Correspondingly, the adsorption performance of the alkaline-etched adsorbents is significantly improved, and MgAl(Cl)-6 has the highest CO2 uptake. With the alkaline etching time further increasing, the CO2 adsorption capacity of MgAl(Cl)-9 sharply decreases, mainly due to the collapse of pore structure and the fragmentized sheet-structure. Hence, the CO2 adsorption performance is greatly influenced by alkaline etching time, and appropriate alkaline etching time can facilitate the contact between CO2 molecules and the adsorbent.
Keywords:  CO2 adsorption      MgAl-LDHs      one-pot hydrothermal method      intercalated anion      alkaline etching  
Received:  25 September 2020      Revised:  01 December 2020      Accepted manuscript online:  30 December 2020
PACS:  81.05.Rm (Porous materials; granular materials)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  68.43.Mn (Adsorption kinetics ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21606058), the Natural Science Foundation of Guangxi, China (Grant Nos. 2017GXNSFBA198193 and 2017GXNSFBA198124), and the Startup Foundation for Doctors of Guilin University of Technology (Grant No. GLUTQD2015008).
Corresponding Authors:  Corresponding author. E-mail: yangwen167@163.com   

Cite this article: 

Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文) Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time 2021 Chin. Phys. B 30 048101

1 Yang W, Feng Y Y, Xiao D and Yuan H Y 2015 Int. J. Energ. Res. 39 805
2 Shahkarami S, Dalai A K and Soltan J 2016 Ind. Eng. Chem. Res. 55 5955
3 Kwon H J, Kwon S, Seo J G, Jung I S, Son Y H, Lee C H, Lee K B and Lee H C 2017 ChemSusChem 10 1701
4 Feng Y Y, Yang W, Chen S and Chu W 2014 Integr. Ferroelectr. 151 116
5 Yao L H, Cao M S, Yang H J, Liu X J, Fang X Y and Yuan J 2014 Comput. Mater. Sci. 85 179
6 Guo Y F, Tan C, Sun J, Li W L, Zhang J B and Zhao C W 2020 Chem. Eng. J. 381 122736
7 Verrecchia G, Cafiero L, Caprariis B D, Dell'Era A, Pettiti I, Tuffi R and Scarsella M 2020 Fuel 276 118041
8 Chen S P, Sun X Y, Luo X and Liang Z W 2019 Ind. Eng. Chem. Res. 58 1177
9 Wang K, Zhao Y W, Clough P T, Zhao P F and Anthony E J 2019 Chem. Eng. J. 372 886
10 Guo H X, Xu Z H, Tao J, Zhao Y J, Ma X B and Wang S P https://doi.org/10.1016/j.jcou.2020.01.012 2020 J. CO2 Util. 37 335
11 Wang J, Wei Y and Yu J 2013 Appl. Clay Sci. 72 37
12 Jamil S, Khan S R, Alvi A R, Kausar F, Ali S, Khan S A, Naim M, Malik A and Janjua M R 2020 Chem. Phys. 528 110530
13 Zhou Y, Liu Z, Bo A, Tana T, Liu X, Zhao F, Sarina S, Jia M, Yang C and Gu Y 2020 J. Hazard. Mater. 382 121111
14 Kou X, Guo H, Ayele E G, Li S, Zhao Y, Wang S and Ma X 2018 Energ. Fuel. 32 5313
15 Xu Z X, Song H, Li P J, Zhu X and Hu X 2020 J. Hazard. Mater. 398 122833
16 Kong X, Chen J, Tang Y, Lv Y and Wang H 2020 J. Hazard. Mater. 392 122392
17 Ma Q, Nengzi L, Li B, Wang Z, Liu L and Cheng X 2020 Sep. Purif. Technol. 235 116204
18 Lestari P R, Takei T, Yanagida S and Kumada N 2020 Mater. Chem. Phys. 250 122988
19 Tao X, Yang C, Huang L and Xu D 2020 Mater. Chem. Phys. 250 123118
20 Zhang D, Guo X, Tong X, Chen Y and Zhang J 2020 J. Alloy. Compd. 837 155529
21 Feng Y Y, Li Y J, Yang W and Huang H B 2020 J. Nanosci. Nanotechnol. 20 1260
22 Hajibeygi M, Mousavi M, Shabanian M and Vahabi H2020 Mater. Today Commun. 23 100880
23 Xu S, Zhang M, Li S Y, Zeng H Y and Pan Y 2020 Appl. Clay Sci. 191 105600
24 Sharma U, Tyagi B and Jasra R V 2008 Ind. Eng. Chem. Res. 47 9588
25 Wang Q, Wu Z, Tay H H, Chen L, Liu Y, Chang J, Zhong Z, Luo J and Borgna A 2011 Catal. Today 164 198
26 Hu G, Wang N, Ohare D and Davis J J2006 Chem. Commun. 3 287
27 Paredes S P, Fetter G, Bosch P and Bulbulian S 2006 J. Mater. Sci. 41 3377
28 Lu Z Y, Zhu W, Lei X D, Williams G R, O'Hare D, Chang Z, Sun X M and Duan X 2012 Nanoscale 4 3640
29 Wu P, Xia L, Liu Y, Wu J, Chen Q and Song S 2018 ACS Sustain. Chem. Eng. 6 16287
30 Naseem S, Gevers B, Boldt R, Labuschagné F G W and Leuteritz A 2019 RSC Adv. 9 3030
31 Peng J, Iruretagoyena D and Chadwick D 2018 J. CO2 Util. 24 73
32 Zhang H, Hu J, Xie J, Wang S and Cao Y 2019 RSC Adv. 9 2011
33 Tuerk T, Alp I and Deveci H 2009 J. Hazard. Mater. 171 665
34 Zhu X, Shi Y and Cai N 2017 Fuel 207 579
35 Borges G A, Ferreira G M D, Siqueira K P F, Dias A and Mageste A B 2020 J. Colloid Interf. Sci. 575 194
36 Cocheci L, Lupa L, Tolea N S, Muntean C and Negrea P 2020 Sep. Purif. Technol. 250 117104
37 Thouchprasitchai N, Pintuyothin N and Pongstabodee S 2017 J. Environ. Sci. 65 293
38 Othman M R, Rasid N M and Fernando W J N 2006 Chem. Eng. Sci. 61 1555
[1] MgO-decorated carbon nanotubes for CO2 adsorption: first principles calculations
Zhu Feng(朱峰), Dong Shan(董珊), and Cheng Gang(承刚). Chin. Phys. B, 2011, 20(7): 077103.
No Suggested Reading articles found!