Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080303    DOI: 10.1088/1674-1056/21/8/080303
GENERAL Prev   Next  

Quantum superdense coding based on hyperentanglement

Zhao Rui-Tong (赵瑞通)a, Guo Qi (郭奇)a, Chen Li (陈丽)b, Wang Hong-Fu (王洪福)a, Zhang Shou (张寿)a
a Department of Physics, College of Science, Yanbian University, Yanji 133002, China;
b Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  We present a scheme for quantum superdense coding with hyperentanglement, in which the sender can transfer four bits of classical information by sending only one photon. The important device in the scheme is hyperentangled Bell-state analyzer in both of polarization and frequency degrees of freedom, which is also constructed in the paper by using quantum nondemolition detector assisted by cross-Kerr nonlinearity. Our scheme can transfer more information with less resources than the existing schemes and is nearly deterministic and nondestructive.
Keywords:  quantum superdense coding      hyperentangled state      Bell-state analysis  
Received:  16 December 2011      Revised:  12 February 2012      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11147174).
Corresponding Authors:  Zhang Shou     E-mail:  szhang@ybu.edu.cn

Cite this article: 

Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Chen Li (陈丽), Wang Hong-Fu (王洪福), Zhang Shou (张寿) Quantum superdense coding based on hyperentanglement 2012 Chin. Phys. B 21 080303

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Zhang X Z, Gong W G, Tan Y G, Ren Z Z and Guo X T 2009 Chin. Phys. B 18 2143
[3] Jiao R Z, Zhang C and Ma H Q 2011 Acta Phys. Sin. 60 110303 (in Chinese)
[4] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[5] Wang M Y and Yan F L 2011 Chin. Phys. B 20 120309
[6] Qin S J, Wen Q Y and Zhu F C 2008 Chin. Phys. Lett. 25 3551
[7] Yang Y G and Wen Q Y 2008 Chin. Phys. B 17 419
[8] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[9] Tan J and Fang M F 2006 Chin. Phys. 15 1695
[10] Yin J, Qian Y, Li X Q, Bao X H, Peng C Z, Yang T and Pan G S 2011 Acta Phys. Sin. 60 060308 (in Chinese)
[11] Ye L and Yu L B 2005 Phys. Lett. A 346 330
[12] Lee H J, Ahn D and Hwang S W 2002 Phys. Rev. A 66 024304
[13] Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301
[14] Hiroshima T 2001 J. Phys. A: Math. Gen. 34 6907
[15] Zheng X J, Xu H, Fang M F and Zhu K C 2010 Chin. Phys. B 19 010309
[16] Ye L and Guo G C 2005 Phys. Rev. A 71 034304
[17] Braunstein S L and Kimble H J 2000 Phys. Rev. A 61 042302
[18] Vaidman L and Yoran N 1999 Phys. Rev. A 59 116
[19] Calsamiglia J 2002 Phys. Rev. A 65 030301(R)
[20] Kwiat P G 1997 J. Mod. Opt. 44 2173
[21] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[22] Walborn S P, Pádua S and Monken C H 2003 Phys. Rev. A 68 042313
[23] Barbieri M, Vallone G, Mataloni P and Martini F De 2007 Phys. Rev. A 75 042317
[24] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[25] Munro W J, Nemoto K, Spiller T P, Barrett S D, Kok P and Beausoleil R G 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S135
[26] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[27] Resch K J, Myrskog S H, Lundeen J S and Steinberg A M 2001 Phys. Rev. A 64 056101
[28] Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
[29] Du K and Qiao C F 2012 J. Mod. Opt. 59 611
[30] Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 773(R)
[31] Huntington E H and Ralph T C 2004 Phys. Rev. A 69 042318
[32] Huntington E H, Milford G N, Robilliard C and Ralph T C 2005 Opt. Lett. 30 2481
[33] Hofmann H F, Kojima K, Takeuchi S and Sasaki K 2003 J. Opt. B: Quantum Semiclass. Opt. 5 218
[34] Wittmann C, Andersen U L, Takeoka M, Sych D and Leuchs G 2010 Phys. Rev. A 81 062338
[35] Bloch M, McLaughlin S W, Merolla J M and Patois F 2007 Opt. Lett. 32 301
[1] Complete Bell-state analysis for single-photon hybrid entangled state
Sheng Yu-Bo (盛宇波), Zhou Lan (周澜), Cheng Wei-Wen (程维文), Gong Long-Yan (巩龙龑), Wang Lei (王磊), Zhao Sheng-Mei (赵生妹). Chin. Phys. B, 2013, 22(3): 030314.
[2] Nondestructive and complete Bell-state analysis for atomic qubit systems
He Yong(何勇) and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(9): 090310.
[3] Quantum superdense coding via cavity-assisted interactions
Pan Guo-Zhu(潘国柱), Yang Ming(杨名), and Cao Zhuo-Liang(曹卓良). Chin. Phys. B, 2009, 18(6): 2319-2323.
[4] Experimental realization of information transmission between not-directly-coupled spins on NMR quantum computers
Wei Da-Xiu (魏达秀), Luo Jun (罗军), Yang Xiao-Dong (杨晓冬), Sun Xian-Ping (孙献平), Zeng Xi-Zhi (曾锡之), Liu Mai-Li (刘买利), Ding Shang-Wu (丁尚武), Zhan Ming-Sheng (詹明生). Chin. Phys. B, 2004, 13(6): 817-823.
No Suggested Reading articles found!