Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110302    DOI: 10.1088/1674-1056/19/11/110302
GENERAL Prev   Next  

Nonlinear waves in a fluid-filled thin viscoelastic tube

Zhang Shan-Yuan(张善元) and Zhang Tao(张涛)
Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incompressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin–Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the propagation of nonlinear pressure wave in the solid–liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the exponent $\alpha$ of the perturbation parameter in Gardner–Morikawa transformation according to the order of viscous coefficient $\eta$, three kinds of evolution equations with soliton solution, i.e. Korteweg–de Vries (KdV)–Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.
Keywords:  fluid-filled tube      solitary wave      KdV–Burgers equation      Kelvin–Vogit model  
Received:  03 March 2010      Revised:  07 May 2010      Accepted manuscript online: 
PACS:  47.35.Fg (Solitary waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10772129).

Cite this article: 

Zhang Shan-Yuan(张善元) and Zhang Tao(张涛) Nonlinear waves in a fluid-filled thin viscoelastic tube 2010 Chin. Phys. B 19 110302

[1] Yang H L, Song J B, Yang L G and Liu Y J 2007 Chin. Phys. 16 3589
[2] Lighthill J 1978 Waves in Fluids (Cambrige: Cambrige University Press) p231
[3] Hashizume Y 1985 J. Phys. Soc. Japan 54 3305
[4] Demiray H 2002 Appl. Math. Comput. 133 29
[5] Demiray H 2008 Int. J. Non-linear Mech. 43 241
[6] Duan W S, Wang B R and Wei R J 1997 Phys. Rev. E 55 1773
[7] Zhang T and Zhang S Y 2009 Mech. Engineer. 31 25 (in Chinese)
[8] Fung Y C 1997 Biomechanics: Circulation (New York: Spinger-Verlag) p108
[9] Yao R X, Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 1821
[10] Zhang H P, Li B, Chen Y and Huang F 2010 Chin. Phys. B 19 020201
[11] Pedley T J 1980 The Fluid Mechanics of Large Blood Vessels (London: Cambridge University Press)
[12] Olson R M 1968 J. Appl. Phys. 24 563
[13] McDonald D A 1974 Blood Flow in Arteries (London: Edward Amold) p259 endfootnotesize
[1] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[2] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[3] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[4] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[5] Decaying solitary waves propagating in one-dimensional damped granular chain
Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁). Chin. Phys. B, 2018, 27(7): 074501.
[6] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[7] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[8] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[9] Envelope solitary waves and their reflection and transmission due to impurities in a granular material
Wen-Qing Du(杜文青), Jian-An Sun(孙建安), Yang-Yang Yang(杨阳阳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(1): 014501.
[10] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[11] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[12] Fully nonlinear (2+1)-dimensional displacement shallow water wave equation
Feng Wu(吴锋), Zheng Yao(姚征), Wanxie Zhong(钟万勰). Chin. Phys. B, 2017, 26(5): 054501.
[13] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[14] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng (陈耀登), Yang Hong-Wei (杨红卫), Gao Yu-Fang (高玉芳), Yin Bao-Shu (尹宝树), Feng Xing-Ru (冯兴如). Chin. Phys. B, 2015, 24(9): 090205.
[15] Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
Reza Mohammadi. Chin. Phys. B, 2015, 24(5): 050206.
No Suggested Reading articles found!