Please wait a minute...
Chin. Phys., 2005, Vol. 14(6): 1120-1124    DOI: 10.1088/1009-1963/14/6/011
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Experimental observation of pump-probe spectra of caesium D2 line with a vapour cell

Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min
State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shannxi University, Taiyuan 030006, China
Abstract  Pump-probe spectra of cesium (Cs) D2 line are experimentally investigated in a Cs atomic vapor cell with co-propagating orthogonal linearly-polarized pump and probe laser beams. Absorption-reduction dips duo to electromagnetically induced transparency (EIT) in multi-Λ-type Zeeman sublevels of 6 S1/2 F=3 – 6 P3/2 F’=2 hyperfine transition and absorption-enhanced peaks due to electromagnetically induced absorption (EIA) in 6 S1/2 F=4 – 6 P3/2 F’=5 hyperfine transition are demonstrated. With detuned pump beam abnormal sign-reversed signals inside the EIT dip and the EIA peak are clearly observed.
Keywords:  atomic coherence      electromagnetically induced transparency (EIT)      cesium atoms      pump-probe spectroscopy      electromagnetically induced absorption (EIA)     
Received:  25 November 2004      Published:  27 May 2005
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.-t (Photoionization and excitation)  
  32.60.+i (Zeeman and Stark effects)  
  32.30.-r (Atomic spectra?)  
Fund: This work is financially supported by the National Natural Science Foundation of China (approval numbers: 10434080, 10374062), by Key Scientific Project of Education Ministry of China (project number: 204019), by the Research Funds for Youth Academic Lead

Cite this article: 

Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min Experimental observation of pump-probe spectra of caesium D2 line with a vapour cell 2005 Chin. Phys. 14 1120

[1] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[2] Phase-dependent double optomechanically induced transparency in a hybrid optomechanical cavity system with coherently mechanical driving
Shi-Chao Wu, Li-Guo Qin, Jian Lu, Zhong-Yang Wang. Chin. Phys. B, 2019, 28(7): 074204.
[3] Opto-electromechanically induced transparency in a hybrid opto-electromechanical system
Hui Liu, Li-Guo Qin, Li-Jun Tian, Hong-Yang Ma. Chin. Phys. B, 2019, 28(10): 108502.
[4] Effect of residual Doppler averaging on the probe absorption in cascade type system: A comparative study
Suman Mondal, Arindam Ghosh, Khairul Islam, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2018, 27(9): 094204.
[5] Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement
Linjie Zhang, Jiasheng Liu, Yue Jia, Hao Zhang, Zhenfei Song, Suotang Jia. Chin. Phys. B, 2018, 27(3): 033201.
[6] Dynamically controlled optical nonreciprocity of a double-ladder system with spontaneously generated coherence in moving atomic optical lattice
Nuo Ba, Xiang-Yao Wu, Dong-Fei Li, Dan Wang, Jin-You Fei, Lei Wang. Chin. Phys. B, 2017, 26(5): 054207.
[7] Triple optomechanical induced transparency in a two-cavity system
Shi-Chao Wu, Li-Guo Qin, Jun Jing, Guo-Hong Yang, Zhong-Yang Wang. Chin. Phys. B, 2016, 25(5): 054203.
[8] Laser frequency locking based on Rydberg electromagnetically induced transparency
Yuechun Jiao, Jingkui Li, Limei Wang, Hao Zhang, Linjie Zhang, Jianming Zhao, Suotang Jia. Chin. Phys. B, 2016, 25(5): 053201.
[9] Reflection-type electromagnetically induced transparencyanalogue in terahertz metamaterials
Ding Chun-Feng, Zhang Ya-Ting, Yao Jian-Quan, Sun Chong-Ling, Xu De-Gang, Zhang Gui-Zhong. Chin. Phys. B, 2014, 23(12): 124203.
[10] Preparation of steady-state entanglement via a laser-excited resonant interaction
Cheng Guang-Ling, Chen Ai-Xi, Geng Jun, Zhong Wen-Xue, Deng Li. Chin. Phys. B, 2012, 21(8): 084206.
[11] Continuously tunable sub-half-wavelength localization via coherent control of spontaneous emission
Wang Fei, Gong Cheng, Tan Xin-Yu, Shi Wen-Xing. Chin. Phys. B, 2012, 21(11): 114206.
[12] Coherence-enhanced entanglement between two atoms at high temperature
Hu Yao-Hua, Fang Mao-Fa, Jiang Chun-Lei, Zeng Ke. Chin. Phys. B, 2008, 17(5): 1784-1790.
[13] Atomic coherence control on the entanglement of two atoms in two-photon processes
Hu Yao-Hua, Fang Mao-Fa, Wu Qin. Chin. Phys. B, 2007, 16(8): 2407-2414.
[14] Transmission probability of the two-mode mazer with injected atomic coherence
Yuan Chun-Hua, Zhang Zhi-Ming. Chin. Phys. B, 2005, 14(1): 144-148.
[15] Absorption spectroscopy of cold caesium atoms confined in a magneto-optical trap
Yan Shu-Bin, Liu Tao, Geng Tao, Zhang Tian-Cai, Peng Kun-Chi, Wang Jun-Min. Chin. Phys. B, 2004, 13(10): 1669-1673.
No Suggested Reading articles found!