Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117102    DOI: 10.1088/1674-1056/ac7864
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique

Juan Qin(秦娟)1, Gang Cao(曹港)1, Run Xu(徐闰)1,2,†, Jing Lin(林婧)1, Hua Meng(孟华)1, Wen-Zhen Wang(王文贞)1,2, Zi-Ye Hong(洪子叶)1, Jian-Cong Cai(蔡健聪)1, and Dong-Mei Li(李冬梅)1
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan 314113, China
Abstract  Time-of-flight (ToF) transient current method is an important technique to study the transport characteristics of semiconductors. Here, both the direct current (DC) and pulsed bias ToF transient current method are employed to investigate the transport properties and electric field distribution inside the MAPbI$_{3}$ single crystal detector. Owing to the almost homogeneous electric field built inside the detector during pulsed bias ToF measurement, the free hole mobility can be directly calculated to be about 22 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, and the hole lifetime is around 6.5 μs-17.5 μs. Hence, the mobility-lifetime product can be derived to be $1.4\times 10^{-4}$ cm$^{2}\cdot$V$^{-1}$-$3.9\times 10^{-4}$ cm$^{2}\cdot$V$^{-1}$. The transit time measured under the DC bias deviates with increasing voltage compared with that under the pulsed bias, which arises mainly from the inhomogeneous electric field distribution inside the perovskite. The positive space charge density can then be deduced to increase from 3.1$\times10^{10}$ cm$^{-3}$ to 6.89$\times 10^{10}$ cm$^{-3}$ in a bias range of 50 V-150 V. The ToF measurement can provide us with a facile way to accurately measure the transport properties of the perovskite single crystals, and is also helpful in obtaining a rough picture of the internal electric field distribution.
Keywords:  MAPbI3      space charge density      electric field distribution      time-of-flight measurement  
Received:  27 April 2022      Revised:  03 June 2022      Accepted manuscript online:  14 June 2022
PACS:  71.20.Nr (Semiconductor compounds)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  29.40.-n (Radiation detectors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175131 and 11905133) and the China Postdoctoral Science Foundation (Grant No. 2021M692021).
Corresponding Authors:  Run Xu     E-mail:  runxu@shu.edu.cn

Cite this article: 

Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅) Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique 2022 Chin. Phys. B 31 117102

[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316
[3] Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Gr?tzel M and Kim J Y 2021 Nature 592 381
[4] Stranks Samuel D, Eperon Giles E, Grancini G, Menelaou C, Alcocer Marcelo J P, Leijtens T, Herz Laura M, Petrozza A and Snaith Henry J 2013 Science 342 341
[5] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L and Huang J 2015 Science 347 967
[6] Shi D, Adinolfi V, Comin R, Yuan M J, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H and Bakr O M 2015 Science 347 519
[7] Zhang Z and Saparov B 2021 Appl. Phys. Lett. 119 030502
[8] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J and Herz L M 2014 Adv. Mater. 26 1584
[9] Gu Y F, Du H J, Li N N, Yang L and Zhou C Y 2019 Chin. Phys. B 28 048802
[10] Saidaminov M I, Abdelhady A L, Murali B, Alarousu E, Burlakov V M, Peng W, Dursun I, Wang L, He Y, Maculan G, Goriely A, Wu T, Mohammed O F and Bakr O M 2015 Nat. Commun. 6 7586
[11] Erickson J C, Yao H W, James R B, Hermon H and Greaves M 2000 J. Electron. Mater. 29 699
[12] Xu L, Jie W, Fu X, Zha G, Feng T, Guo R, Wang T, Xu Y and Zaman Y 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 767 318
[13] Cho H Y, Lee J H, Kwon Y K, Moon J Y and Lee C S 2011 J. Instrum. 6 C01025
[14] Poncé S, Schlipf M and Giustino F 2019 ACS Energy Lett. 4 456
[15] Liu Y, Yang Z, Cui D, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, Yu F, Zhang X, Zhao C and Liu S 2015 Adv. Mater. 27 5176
[16] Musiienko A, Pipek J, Praus P, Brynza M, Belas E, Dryzhakov B, Du M H, Ahmadi M and Grill R 2020 Sci. Adv. 6 eabb6393
[17] Suzuki K, Sawada T and Imai K 2011 IEEE Trans. Nucl. Sci. 58 1958
[18] Suzuki K and Shiraki H 2009 IEEE Trans. Nucl. Sci. 56 1712
[19] Baussens O, Maturana L, Amari S, Zaccaro J, Verilhac J M, Hirsch L and Gros-Daillon E 2020 Appl. Phys. Lett. 117 041904
[20] Shrestha S, Matt G J, Osvet A, Niesner D, Hock R and Brabec C J 2018 J. Phys. Chem. C 122 5935
[21] Musiienko A, Ceratti D R, Pipek J, Brynza M, Elhadidy H, Belas E, Betu?iak M, Delport G and Praus P 2021 Adv. Funct. Mater. 31 2104467
[22] Cola A, Farella I, Mancini A M and Donati A 2007 IEEE Trans. Nucl. Sci. 54 868
[23] Dědi? V, Franc J, Sellin P J, Grill R and Perumal V 2012 J. Instrum. 7 P02011
[24] Bale D S and Szeles C 2008 Phys. Rev. B 77 035205
[25] Wang W, Meng H, Qi H, Xu H, Du W, Yang Y, Yi Y, Jing S, Xu S, Hong F, Qin J, Huang J, Xu Z, Zhu Y, Xu R, Lai J, Xu F, Wang L and Zhu J 2020 Adv. Mater. 32 2001540
[26] Uxa ?, Belas E, Grill R, Praus P and James R B 2013 J. Phys. D: Appl. Phys. 46 395102
[27] Abou-Ras D, Kirchartz T and Rau U 2011 Advanced Characterization Techniques for Thin Film Solar Cells (Berlin: John Wiley & Sons) p. 203
[28] Kovalenko M, Sakhatskyi K, Turedi B, Matt G, Lintangpradipto M, Naphade R, Mohammed O, Yakunin S and Bakr O 2021 a preprint
[29] Pope M and Swenberg C E 1999 Electronic processes in organic crystals and polymers (New York: Oxford University Press) p. 379
[30] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben Peter A, Mohammed Omar F, Sargent Edward H and Bakr Osman M 2015 Science. 347 519
[31] Li W G, Rao H S, Chen B X, Wang X D and Kuang D B 2017 J. Mater. Chem. A 5 19431
[32] Ye F, Lin H, Wu H, Zhu L, Huang Z, Ouyang D, Niu G and Choy W C H 2019 Adv. Funct. Mater. 29 1806984
[33] Chen Y, Yi H T, Wu X, Haroldson R, Gartstein Y N, Rodionov Y I, Tikhonov K S, Zakhidov A, Zhu X Y and Podzorov V 2016 Nat. Commun. 7 12253
[34] Gunawan O, Pae S R, Bishop D M, Virgus Y, Noh J H, Jeon N J, Lee Y S, Shao X, Todorov T, Mitzi D B and Shin B 2019 Nature 575 151
[35] Valverde-Chávez D A, Ponseca C S, Stoumpos C C, Yartsev A, Kanatzidis M G, Sundstr?m V and Cooke D G 2015 Energy Environ. Sci. 8 3700
[36] Xia C Q, Lin Q, Patel J B, Wright A D, Crothers T W, Milot R L, Herz L M and Johnston M B 2019 2019 44$th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 1-6, 2019 Paris, France, p. 1
[37] U, Belas E, Grill R, Praus P and James R B 2012 IEEE Trans. Nucl. Sci. 59 2402
[38] Musiienko A, Grill R, Pekárek J, Belas E, Praus P, Pipek J, Dědi? V and Elhadidy H 2017 Appl. Phys. Lett. 111 082103
[39] He Y, Ke W, Alexander G C B, Mccall K M, Chica D G, Liu Z, Hadar I, Stoumpos C C, Wessels B W and Kanatzidis M G 2018 ACS Photon. 5 4132
[1] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[2] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[3] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[4] Twin boundary dominated electric field distribution in CdZnTe detectors
Jiangpeng Dong(董江鹏), Wanqi Jie(介万奇), Jingyi Yu(余竞一), Rongrong Guo(郭榕榕), Christian Teichert, Kevin-P Gradwohl, Bin-Bin Zhang(张滨滨), Xiangxiang Luo(罗翔祥), Shouzhi Xi(席守智), Yadong Xu(徐亚东). Chin. Phys. B, 2018, 27(11): 117202.
[5] Influence of the channel electric field distribution on the polarization Coulomb field scattering in In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors
Yu Ying-Xia (于英霞), Lin Zhao-Jun (林兆军), Luan Chong-Biao (栾崇彪), Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Yang Ming (杨铭), Wang Yu-Tang (王玉堂). Chin. Phys. B, 2014, 23(4): 047201.
[6] Electric field distribution around the chain of composite nanoparticles in ferrofluids
Fan Chun-Zhen (范春珍), Wang Jun-Qiao (王俊俏), Cheng Yong-Guang (程永光), Ding Pei (丁佩), Liang Er-Jun (梁二军), Huang Ji-Ping (黄吉平). Chin. Phys. B, 2013, 22(8): 084703.
[7] Fabrication and characterization of V-gate AlGaN/GaN high electron mobility transistors
Zhang Kai (张凯), Cao Meng-Yi (曹梦逸), Chen Yong-He (陈永和), Yang Li-Yuan (杨丽媛), Wang Chong (王冲), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2013, 22(5): 057304.
[8] Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen–nitrogen mixtures
Sima Wen-Xia (司马文霞), Peng Qing-Jun (彭庆军), Yang Qing (杨庆), Yuan Tao (袁涛), Shi Jian (施健). Chin. Phys. B, 2013, 22(1): 015203.
[9] Electric field distribution and effective nonlinear AC and DC responses of graded cylindrical composites
Ding Xia(丁霞), Jia Yan-Xia(贾艳霞), and Wei En-Bo(魏恩泊) . Chin. Phys. B, 2012, 21(5): 057202.
No Suggested Reading articles found!