Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096106    DOI: 10.1088/1674-1056/ac0da7
RAPID COMMUNICATION Prev   Next  

First neutron Bragg-edge imaging experimental results at CSNS

Jie Chen(陈洁)1,2,4,†, Zhijian Tan(谭志坚)1,2, Weiqiang Liu(刘玮强)1,2,4, Sihao Deng(邓司浩)1,2, Shengxiang Wang(王声翔)1,2, Liyi Wang(王立毅)1,2, Haibiao Zheng(郑海彪)1,2, Huaile Lu(卢怀乐)1,2, Feiran Shen(沈斐然)2,3,4, Jiazheng Hao(郝嘉政)1,2, Xiaojuan Zhou(周晓娟)1,2, Jianrong Zhou(周健荣)1,2, Zhijia Sun(孙志嘉)1,2, Lunhua He(何伦华)2,3,‡, and Tianjiao Liang(梁天骄)1,2
1 Institute of High Energy Physics, Chinese Academy of Sciences(CAS), Beijing 100049, China;
2 Spallation Neutron Source Science Center(SNSSC), Dongguan 523803, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The neutron Bragg-edge imaging is expected to be a new non-destructive energy-resolved neutron imaging technique for quantitatively two-dimensional or three-dimensional visualizing crystallographic information in a bulk material, which could be benefited from pulsed neutron source. Here we build a Bragg-edge imaging system on the General Purpose Powder Diffractometer at the China Spallation Neutron Source. The residual strain mapping of a bent Q235 ferrite steel sample has been achieved with a spectral resolution of 0.15% by the time-of-flight neutron Bragg-edge imaging on this system. The results show its great potential applications in materials science and engineering.
Keywords:  neutron Bragg-edge imaging      China Spallation Neutron Source  
Received:  23 April 2021      Revised:  13 June 2021      Accepted manuscript online:  23 June 2021
PACS:  61.05.Tv (Neutron imaging; neutron tomography)  
  61.05.F- (Neutron diffraction and scattering)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0701903 and 2016YFA0401502), the National Natural Science Foundation of China (Grant No. 12041202), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017023), the Guangdong Natural Science Foundation, China (Grant No. 2016A030313129), and the Department of Science and Technology of Guangdong Province under grant project of energy-resolved neutron imaging instrument.
Corresponding Authors:  Jie Chen, Lunhua He     E-mail:  chenjie@ihep.ac.cn;lhhe@iphy.ac.cn

Cite this article: 

Jie Chen(陈洁), Zhijian Tan(谭志坚), Weiqiang Liu(刘玮强), Sihao Deng(邓司浩), Shengxiang Wang(王声翔), Liyi Wang(王立毅), Haibiao Zheng(郑海彪), Huaile Lu(卢怀乐), Feiran Shen(沈斐然), Jiazheng Hao(郝嘉政), Xiaojuan Zhou(周晓娟), Jianrong Zhou(周健荣), Zhijia Sun(孙志嘉), Lunhua He(何伦华), and Tianjiao Liang(梁天骄) First neutron Bragg-edge imaging experimental results at CSNS 2021 Chin. Phys. B 30 096106

[1] Li X Y, Zhang Z G, He L H, Avdeev M, Ren Y, Zhao H Z and Wang F W 2020 Chin. Phys. B 29 106101
[2] Wang F W, Zhang P L, Shen B G and Yan Q W 2004 Chin. Phys. 13 918
[3] Wei Y, Ma X Y, Feng Z L, Adroja D, Hillier A, Biswas P, Senyshyn A, Hoser A, Mei J W, Meng Z Y, Luo H Q, Shi Y G and Li S L 2020 Chin. Phys. Lett. 37 107503
[4] Sato H 2018 J. Imaging. 4 7
[5] Kardjilov N, Bacechler S, Bastürk M, Jolie J, Lehmann E, Materna T, Schillinger B and Vontobel P 2003 Nuclear Instruments and Methods in Physics Research A. 501 536
[6] Santisteban J R, Edwards L, Steuwer A and Withers P J 2001 J. Appl. Cryst. 34 289
[7] Kabra S, Kelleher J, Kockelmann W, Gutmann M and Tremsin A 2016 J. Phys.: Conf. Ser. 746 012056
[8] Woracek R, Penumadu D, Kardjilov N, Hilger A, Boin M, Banhart J and Manke I 2014 Adv. Mater. 26 4069
[9] Ziesche R F, Tremsin A S, Huang C, Tan C, Grant P S, Storm M, Brett D J L, Shearing R P and Kockelmann W 2020 J. Imaging. 6 136
[10] Watanabe K, Minniti T, Sato H, Tremsin A S, Kockelmann W, Dalgliesh R and Kiyanagi Y 2019 Nuclear Inst. Methods in Physics Research A 944 162532
[11] Carminati C, Strobl M, Minniti T, Boillat P, Hovind J, Morgano M, Rod T H, Polatidis E, Valsecchi J, Mannes D, Kockelmann W and Kaestner A 2020 J. Appl. Cryst. 53 188
[12] Tremsin A S, Vallerga J V, McPhate J B, Siegmund O H W and Raffanti R 2013 IEEE Transactions on Nuclear Science. 60 578
[13] Shinohara T, Kai T, Oikawa K, Nakatani T, Segawa M, Hiroi K, Su Y H, Ooi M, Harada M, Iikura H, Hayashida H, Parker J D, Matsumoto Y, Kamiyama T, Sato H and Kiyanagi Y 2020 Rev. Sci. Instrum. 91 043302
[14] Minniti T, Watanabe K, Burca G, Pooley D E and Kockelmann W 2018 Nuclear Inst. Methods in Physics Research A 888 184
[15] Chen H S, Wang X L 2016 Nat. Mater. 15 689
[16] Strobl M 2015 Physics Procedia. 69 18
[17] Chen J, Kang L, Lu H L, Luo P, Wang F W and He L H 2018 Physica B 551 370
[18] He L H, Chen J, Lu H L, Luo P, Wu Y D, Kang L, Zhang J C, Zhang J R, Du R, Jia X J, Liang T J and Wang F W 2018 Neutron News. 29 7
[19] Wang S X, Chen J, Tan Z J, Deng S H, Wu Y D, Lu H L, Li S D, Chen W C and He L H 2020 Chin. Phys. B
[20] Zhou J R, Zhou X J, Zhou J J, Teng H Y, Yang J Q, Ma Y C, Zhou K, Xia Y G, Xiu Q L, Yang T, Jiang X F, Zhu L, Yang W Q, Yang G A, Xie Y G, Hu B T, Sun Z J and Chen Y B 2020 Nuclear Inst. Methods in Physics Research A 962 163593
[21] Boin M J 2012 Appl. Cryst. 45 603
[22] Pintschovius L, Jung V, Macherauch E and Vöhringer O 1983 Materials Science and Engineering 61 43
[23] van Beeck J, Kouznetsova V G and van Maris M P F HL 2011 Materials Science and Engineering A 528 7207
[24] Lee Y S, Lim J S, Kwon Y N and Moon Y H 2011 Procedia Engineering 10 3333
[1] Displacement damage in optocouplers induced by high energy neutrons at back-n in China Spallation Neutron Source
Rui Xu(徐瑞), Zu-Jun Wang(王祖军), Yuan-Yuan Xue(薛院院), Hao Ning(宁浩), Min-Bo Liu(刘敏波), Xiao-Qiang Guo(郭晓强), Zhi-Bin Yao(姚志斌), Jiang-Kun Sheng(盛江坤), Wu-Ying Ma(马武英), Guan-Tao Dong(董观涛). Chin. Phys. B, 2020, 29(1): 014210.
[2] Analysis of displacement damage effects on bipolar transistors irradiated by spallation neutrons
Yan Liu(刘岩), Wei Chen(陈伟), Chaohui He(贺朝会), Chunlei Su(苏春垒), Chenhui Wang(王晨辉), Xiaoming Jin(金晓明), Junlin Li(李俊霖), Yuanyuan Xue(薛院院). Chin. Phys. B, 2019, 28(6): 067302.
[1] PAN ZHONG, WU RONG-HAN, WANG QI-MING. EFFECTIVE CAVITY LENGTH IN VERTICAL CAVITY SURFACE EMITTING LASER[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(11): 810 -815 .
[2] Sun Li-Qun, Wang Jia, Hong Tao, Tian Qian. A virtual optical probe based on evanescent wave interference[J]. Chin. Phys., 2002, 11(10): 1022 -1027 .
[3] Zhang Dong-Hai. Fragmentation of 16O nuclei in nuclear emulsion[J]. Chin. Phys., 2002, 11(12): 1254 -1258 .
[4] Fang Jian-Hui, Zhao Song-Qing. Noether's theorem of a rotational relativistic variable mass system[J]. Chin. Phys., 2002, 11(5): 445 -449 .
[5] Chen Chao, Wang Zhi-Wen. Inequalities of the electron density at the nucleus and radial expectation values of the ground state for the lithium isoelectronic sequence[J]. Chin. Phys., 2003, 12(6): 604 -609 .
[6] Zhang Bai-Gang, Yao Jian-Quan, Ding Xin, Wang Peng, Xu De-Gang, Zhang Fan, Zhang Hao, Yu Guo-Jun. Low-threshold, high-efficiency, high-repetition-rate optical parametric generator based on periodically poled LiNbO3[J]. Chin. Phys., 2004, 13(3): 364 -368 .
[7] Yang Lei, Wu Jian-Sheng, Zhang Lan-Ting. Effect of phonon scattering mechanisms on the lattice thermal conductivity of skutterudite-related compound[J]. Chin. Phys., 2004, 13(4): 516 -521 .
[8] Luo Shao-Kai, Cai Jian-Le, Jia Li-Qun. A new non-Noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations[J]. Chin. Phys., 2005, 14(4): 656 -659 .
[9] Cheng Qing-Hua, Cao Li, Xu Da-Hai, Wu Da-Jin. Time evolution of the intensity correlation function in a single-mode laser driven by both the coloured pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts[J]. Chin. Phys., 2005, 14(6): 1159 -1167 .
[10] Song Li-Jun, Li Lu, Zhou Guo-Sheng. Interactions of adjacent pulsating, erupting and creeping solitons[J]. Chin. Phys., 2007, 16(1): 148 -153 .