Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 074203    DOI: 10.1088/1674-1056/abf91b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation

Yang-Yang Liu(刘杨洋)1,2, Zhuo Fu(付卓)1,2, Peng Xu(许鹏)1,†, Xiao-Dong He(何晓东)1, Jin Wang(王谨)1, and Ming-Sheng Zhan(詹明生)1,‡
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We propose and demonstrate an alternative method for spectral filtering and frequency stabilization of both 780-nm and 960-nm lasers using a high-finesse length-tunable cavity (HFLTC). Firstly, the length of HFLTC is stabilized to a commercial frequency reference. Then, the two lasers are locked to this HFLTC using the Pound-Drever-Hall (PDH) method which can narrow the linewidths and stabilize the frequencies of both lasers simultaneously. Finally, the transmitted lasers of HFLTC with each power up to about 100 μW, which act as seed lasers, are amplified using the injection locking method for single-atom Rydberg excitation. The linewidths of obtained lasers are narrowed to be less than 1 kHz, meanwhile the obtained lasers' phase noise around 750 kHz are suppressed about 30 dB. With the spectrally filtered lasers, we demonstrate a Rabi oscillation between the ground state and Rydberg state of single-atoms in an optical trap tweezer with a decay time of (67±37) μs, which is almost not affected by laser phase noise. We found that the maximum short-term laser frequency fluctuation of a single excitation lasers is at ~3.3 kHz and the maximum long-term laser frequency drift of a single laser is ~46 kHz during one month. Our work develops a stable and repeatable method to provide multiple laser sources of ultra-low phase noise, narrow linewidth, and excellent frequency stability, which is essential for high precision atomic experiments, such as neutral atom quantum computing, quantum simulation, quantum metrology, and so on.
Keywords:  laser frequency stabilization      spectral filtering      Rydberg state      rubidium atom  
Received:  05 April 2021      Revised:  16 April 2021      Accepted manuscript online:  19 April 2021
PACS:  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  32.80.Ee (Rydberg states)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2016YFA0302800), the National Natural Science Foundation of China (Grant Nos. U20A2074 and 12074391), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 21010100), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017378), and K.C. Wong Education Foundation (Grant No. GJTD-2019-15).
Corresponding Authors:  Peng Xu, Ming-Sheng Zhan     E-mail:  etherxp@wipm.ac.cn;mszhan@wipm.ac.cn

Cite this article: 

Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生) Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation 2021 Chin. Phys. B 30 074203

[1] Monroe C, Meekhof D M, King B E, Itano W M and Wineland D J 1995 Phys. Rev. Lett. 75 4714
[2] Schmidt-Kaler F, Häffner H, Riebe M, Gulde S, Lancaster G P, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R 2003 Nature 422 408
[3] Yamamoto T, Pashkin Y A, Astafiev O, Nakamura Y and Tsai J S 2003 Nature 425 941
[4] Plantenberg J, Groot P D, Harmans C and Mooij J 2007 Nature 447 836
[5] O'Brien J L, Pryde G J, White A G, Ralph T C and Branning D 2003 Nature 426 264
[6] Pittman T B, Fitch M J, Jacobs B C and Franson J D 2003 Phys. Rev. A 68 032316
[7] Saffman M, Walker T G and Mölmer K 2010 Rev. Mod. Phys. 82 2313
[8] Levine H, Keesling A, Semeghini G, Omran A, Tout T. Wang, Ebadi S, Bernien H, Greiner M, Vuletić V, Pichler H and Lukin M D 2019 Phys. Rev. Lett. 123 170503
[9] Graham T M, Kwon M, Grinkemeyer B, Marra Z, Jiang X, Lichtman M T, Sun Y, Ebert M and Saffman M 2019 Phys. Rev. Lett. 123 230501
[10] Zeng Y, Xu P, He X D, Liu Y Y, Liu M, Wang J, Papoular D J, Shlyapnikov G V and Zhan M S 2017 Phys. Rev. Lett. 119 160502
[11] de Léséleuc S, Barredo D, Lienhard V, Browaeys A and Lahaye T 2018 Phys. Rev. A 97 053803
[12] Madjarov I S, Covey J P, Shaw A L, Choi J, Kale A, Cooper A, Pichler H, Schkolnik V, Williams J R and Endres M 2021 Nat. Phys. 16 857
[13] Black E D 2001 Am. J. Phys. 69 79
[14] Akerman N, Navon N, Kotler S, Glickman Y and Ozeri R 2015 New J. Phys. 17 113036
[15] Gerster L 2015 Spectral filtering and laser diode injection for multi-qubit trapped ion gates, MS dissertation (Switzerland: ETH Zurich)
[16] Nazarova T, Lisdat C, Riehle F and Sterr U 2008 JOSA B 25 001632
[17] Levine H, Keesling A, Omran A, Bernien H, Schwartz S, Zibrov A S, Endres M, Greiner M, Vuletić V and Lukin M D 2018 Phys. Rev. Lett. 121 123603
[18] Hadley G R 1986 IEEE Journal of Quantum Electronics 22 419
[19] Legaie R, Picken C J and Pritchard J D 2018 J. Opt. Soc. Am. B 35 892
[20] de Hond J, Cisternas N, Lochead G and Druten N V 2017 Appl. Opt. 56 5436
[21] Berden G, Peeters R and Meijer G 2010 Int. Rev. Phys. Chem. 19 565
[22] Zeng Y, Wang K P, Liu Y Y, He X D, Liu M, Xu P, Wang J and Zhan M S 2018 J. Opt. Soc. Am. B 35 454
[23] Saito S and Yamamoto Y 1981 Electron. Lett. 17 325
[24] Barnes J A, Chi A R, Cutler L S, Healey D J, Leeson D B, McGunigal T E, Mullen J A, Smith W L, Sydnor R L, Vessot R F C and Winkler G M R 1971 IEEE Trans. Instrum. Meas. 20 105
[25] Peter H and Wei L 2006 Opt. Express 14 3923
[26] Okoshi T, Kikuchi K and Nakayama A 1980 Electron. Lett. 16 630
[27] Huang S, Zhu T, Cao Z, Liu M, Deng M, Liu J and Li X 2016 IEEE Photon. Technol. Lett. 28 759
[28] Li Y M, Fu Z, Zhu L, Fang J, Zhu H R, Zhong J Q, Xu P, Chen X, Wang J and Zhan M S 2018 Opt. Commun. 435
[29] Robert J, Paul N and Franco N 2011 Comput. Phys. Commun. 183 1760
[30] Tuchendler C, Lance A M, Browaeys A, Sortais Y R P and Grangier P 2008 Phys. Rev. A 78 033425
[31] Zhang Z Y, Ding D S and Shi B S 2021 Chin. Phys. B 30 020307
[32] Wu X L, Liang X H, Tian Y Q, Yang F, Chen C, Liu Y C, Tey M K and You L 2021 Chin. Phys. B 30 020305
[1] A 795 nm gain coupled distributed feedback semiconductor laser based on tilted waveguides
De-Zheng Ma(马德正), Yong-Yi Chen(陈泳屹), Yu-Xin Lei(雷宇鑫), Peng Jia(贾鹏), Feng Gao(高峰), Yu-Gang Zeng(曾玉刚), Lei Liang(梁磊), Yue Song(宋悦), Chun-Kao Ruan(阮春烤), Xia Liu(刘夏), Li Qin(秦莉), Yong-Qiang Ning(宁永强), and Li-Jun Wang(王立军). Chin. Phys. B, 2021, 30(5): 050505.
[2] Nonlinear spectroscopy of three-photon excitation of cesium Rydberg atoms in vapor cell
Jiabei Fan(樊佳蓓), Yunhui He(何云辉), Yuechun Jiao(焦月春), Liping Hao(郝丽萍), Jianming Zhao(赵建明), and Suotang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 034207.
[3] Photoelectron imaging on vibrational excitation and Rydberg intermediate states in multi-photon ionization process of NH3 molecule
Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Le-Le Song(宋乐乐), Hai-Bin Du(杜海滨), Xiao-Chun Wang(王晓春), Lan-Lai He(赫兰海), Si-Zuo Luo(罗嗣佐), Qin Yang(杨钦), Jing Leng(冷静), Fu-Chun Liu(刘福春). Chin. Phys. B, 2020, 29(9): 093201.
[4] Controlling Rydberg excitation process with shaped intense ultrashort laser pulses
Xiao-Yun Zhao(赵晓云), Chun-Cheng Wang(王春成), Shi-Lin Hu(胡师林), Wei-Dong Li(李卫东), Jing Chen(陈京), Xiao-Lei Hao(郝小雷). Chin. Phys. B, 2019, 28(8): 083202.
[5] Photoelectron imaging of resonance-enhanced multiphoton ionization and above-threshold ionization of ammonia molecules in a strong 800-nm laser pulse
Le-Le Song(宋乐乐), Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Xiao-Chun Wang(王晓春), Lan-Hai He(赫兰海), Si-Zuo Luo(罗嗣佐), Wen-Hui Hu(胡文惠), Qiu-Nan Tong(佟秋男), Da-Jun Ding(丁大军), Fu-Chun Liu(刘福春). Chin. Phys. B, 2019, 28(6): 063201.
[6] Laser frequency offset-locking using electromagnetically induced transparency spectroscopy of 85Rb in magnetic field
Han-Mu Wang(王汉睦), Hong Cheng(成红), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Zi-Shan Xu(徐子珊), Hong-Ping Liu(刘红平). Chin. Phys. B, 2018, 27(9): 094205.
[7] Photoelectron angular distributions of H ionization in low energy regime: Comparison between different potentials
Shu-Na Song(宋舒娜), Hao Liang(梁昊), Liang-You Peng(彭良友), Hong-Bing Jiang(蒋红兵). Chin. Phys. B, 2016, 25(9): 093201.
[8] Spin noise spectroscopy of rubidium atomic gas under resonant and non-resonant conditions
Jian Ma(马健), Ping Shi(史平), Xuan Qian(钱轩), Wei Li(李伟), Yang Ji(姬扬). Chin. Phys. B, 2016, 25(11): 117203.
[9] Field ionization process of Eu 4f76snp Rydberg states
Zhang Jing, Shen Li, Dai Chang-Jian. Chin. Phys. B, 2015, 24(11): 113201.
[10] Lifetimes of Rydberg states of Eu atoms
Jing Hua, Ye Shi-Wei, Dai Chang-Jian. Chin. Phys. B, 2015, 24(1): 013203.
[11] Stark spectra of Rydberg states in atomic cesium in the vicinity of n=18
Dong Hui-Jie, Wang Ting, Li Chang-Yong, Zhao Jian-Ming, Zhang Lin-Jie. Chin. Phys. B, 2013, 22(7): 073201.
[12] Measurement of the argon-gas-induced broadening and line shifting of the barium Rydberg level 6s24d 1D2 by two-photon resonant nondegenerate four-wave mixing
Sun Jiang, Xiong Zhi-Qiang, Sun Juan, Wang Ying, Su Hong-Xin. Chin. Phys. B, 2012, 21(6): 064215.
[13] Frequency stabilization of a 399-nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp
Wang Wen-Li, Ye Jie, Jiang Hai-Ling, Bi Zhi-Yi, Ma Long-Sheng, Xu Xin-Ye. Chin. Phys. B, 2011, 20(1): 013201.
[14] Experimental study of bound and autoionizing Rydberg states of the europium atom
Xiao Ying, DaiChang-Jian, Qin Wen-Jie. Chin. Phys. B, 2010, 19(6): 063202.
[15] Experimental study of highly excited even-parity bound states of the Sm atom
Qin Wen-Jie, Dai Chang-Jian, Xiao Ying, Zhao Hong-Ying. Chin. Phys. B, 2009, 18(8): 3384-3394.
No Suggested Reading articles found!