Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets

Guangyu Sun(孙光宇)^{1,2}, Nvsen Ma(马女森)^{3,1}, Bowen Zhao(赵博文)^{4}, Anders W. Sandvik^{4,1,†}, and Zi Yang Meng(孟子杨)^{1,5,‡}

1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Beihang University, Beijing 100191, China; 4 Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA; 5 Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China

Abstract Recent experiments[Guo et al., Phys. Rev. Lett.124 206602 (2020)] on thermodynamic properties of the frustrated layered quantum magnet SrCu_{2}(BO_{3})_{2}—the Shastry-Sutherland material—have provided strong evidence for a low-temperature phase transition between plaquette-singlet and antiferromagnetic order as a function of pressure. Further motivated by the recently discovered unusual first-order quantum phase transition with an apparent emergent O(4) symmetry of the antiferromagnetic and plaquette-singlet order parameters in a two-dimensional "checkerboard J-Q" quantum spin model[Zhao et al., Nat. Phys.15 678 (2019)], we here study the same model in the presence of weak inter-layer couplings. Our focus is on the evolution of the emergent symmetry as the system crosses over from two to three dimensions and the phase transition extends from strictly zero temperature in two dimensions up to finite temperature as expected in SrCu_{2}(BO_{3})_{2}. Using quantum Monte Carlo simulations, we map out the phase boundaries of the plaquette-singlet and antiferromagnetic phases, with particular focus on the triple point where these two ordered phases meet the paramagnetic phase for given strength of the inter-layer coupling. All transitions are first-order in the neighborhood of the triple point. We show that the emergent O(4) symmetry of the coexistence state breaks down clearly when the interlayer coupling becomes sufficiently large, but for a weak coupling, of the magnitude expected experimentally, the enlarged symmetry can still be observed at the triple point up to significant length scales. Thus, it is likely that the plaquette-singlet to antiferromagnetic transition in SrCu_{2}(BO_{3})_{2} exhibits remnants of emergent O(4) symmetry, which should be observable due to additional weakly gapped Goldstone modes.

(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))

Fund: GYU, NVM, and ZYM acknowledge the support from the RGC of Hong Kong SAR China (Grant Nos. GRF 17303019 and 17301420), the National Key Research and Development Program of China (Grant No. 2016YFA0300502), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000). N. M acknowledges support from the National Natural Science Foundation of China (Grant No. 12004020). AWS was supported by the NSF (Grant No. DMR-1710170) and by the Simons Foundation (Grant No. 511064).

Corresponding Authors:
Anders W. Sandvik, Zi Yang Meng
E-mail: sandvik@bu.edu;zymeng@iphy.ac.cn

Cite this article:

Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨) Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets 2021 Chin. Phys. B 30 067505

[1] Calabrese P, Pelissetto A and Vicari E 2003 Phys. Rev. B 67 054505 [2] Eichhorn A, Mesterházy D and Scherer M M 2013 Phys. Rev. E 88 042141 [3] Zhang S C, Hu J P, Arrigoni E, Hanke W and Auerbach A 1999 Phys. Rev. B 60 13070 [4] Hu J P and Zhang S C 2001 Phys. Rev. B 64 100502 [5] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490 [6] Senthil T, Balents L, Sachdev S, Vishwanath A and Fisher M P A 2004 Phys. Rev. B 70 144407 [7] Senthil T and Levin M 2013 Phys. Rev. Lett. 110 046801 [8] Sandvik A W 2007 Phys. Rev. Lett. 98 227202 [9] Jiang F J, Nyfeler M, Chandrasekharan S and Wiese U 2008 J. Stat. Mech.: Theory and Experiment 2008 P02009 [10] Lou J, Sandvik A W and Kawashima N 2009 Phys. Rev. B 80 180414 [11] Senthil T and Fisher M P A 2006 Phys. Rev. B 74 064405 [12] Nahum A, Serna P, Chalker J T, Ortuño M and Somoza A M 2015 Phys. Rev. Lett. 115 267203 [13] Suwa H, Sen A and Sandvik A W 2016 Phys. Rev. B 94 144416 [14] Wang C, Nahum A, Metlitski M A, Xu C and Senthil T 2017 Phys. Rev. X 7 031051 [15] Gazit S, Assaad F F, Sachdev S, Vishwanath A and Wang C 2018 Proc. Natl. Acad. Sci. USA 115 E6987 [16] Sreejith G J, Powell S and Nahum A 2019 Phys. Rev. Lett. 122 080601 [17] Li Z X, Jian S K and Yao H 2019 arXiv:1904.10975 [18] Sato T, Hohenadler M, Grover T, McGreevy J and Assaad F F 2020 arXiv e-prints arXiv:2005.08996 (Preprint 2005.08996) [19] Qin Y Q, He Y Y, You Y Z, Lu Z Y, Sen A, Sandvik A W, Xu C and Meng Z Y 2017 Phys. Rev. X 7 031052 [20] Ma N, Sun G Y, You Y Z, Xu C, Vishwanath A, Sandvik A W and Meng Z Y 2018 Phys. Rev. B 98 174421 [21] Ma N, You Y Z and Meng Z Y 2019 Phys. Rev. Lett. 122 175701 [22] Melko R G and Kaul R K 2008 Phys. Rev. Lett. 100 017203 [23] Tang Y and Sandvik A W 2013 Phys. Rev. Lett. 110 217213 [24] Block M S, Melko R G and Kaul R K 2013 Phys. Rev. Lett. 111 137202 [25] Harada K, Suzuki T, Okubo T, Matsuo H, Lou J, Watanabe H, Todo S and Kawashima N 2013 Phys. Rev. B 88 220408 [26] Nahum A, Chalker J T, Serna P, Ortuño M and Somoza A M 2015 Phys. Rev. X 5 041048 [27] Pujari S, Alet F and Damle K 2015 Phys. Rev. B 91 104411 [28] Shao H, Guo W and Sandvik A W 2016 Science 352 213 [29] Zhang X F, He Y C, Eggert S, Moessner R and Pollmann F 2018 Phys. Rev. Lett. 120 115702 [30] Sandvik A W and Zhao B 2020 Chin. Phys. Lett. 37 057502 [31] Zhao B W, J T and Sandvik A W 2020 Chin. Phys. B 29 57506 [32] Chen K, Huang Y, Deng Y, Kuklov A B, Prokof’ev N V and Svistunov B V 2013 Phys. Rev. Lett. 110 185701 [33] Ma R and Wang C 2020 Phys. Rev. B 102 020407 [34] Nahum A 2020 Phys. Rev. B 102 201116 [35] Zhao B, Weinberg P and Sandvik A W 2019 Nat. Phys. 15 678 [36] Zayed M, Rüegg C, Larrea J, Läuchli A M, Panagopoulos C, Saxena S S, Ellerby M, McMorr D, Strässle T, Klotz S S, Hamel G, Sadykov R A, Pomjakushin V, Boehm M, Jiménez-Ruiz M, Schneidewin A, Pomjakushin E, Stingaciu M, Conder K and Rønnow H M 2017 Nat. Phys. 13 962 [37] Lee J Y, You Y Z, Sachdev S and Vishwanath A 2019 Phys. Rev. X 9 041037 [38] Guo J, Sun G, Zhao B, Wang L, Hong W, Sidorov V A, Ma N, Wu Q, Li S, Meng Z Y, Sandvik A W and Sun L 2020 Phys. Rev. Lett. 124 206602 [39] Bettler S, Stoppel L, Yan Z, Gvasaliya S and Zheludev A 2020 Phys. Rev. Res. 2 012010 [40] Sriram Shastry B and Sutherland B 1981 Physica B+C 108 1069 [41] Kageyama H, Yoshimura K, Stern R, Mushnikov N V, Onizuka K, Kato M, Kosuge K, Slichter C P, Goto T and Ueda Y 1999 Phys. Rev. Lett. 82 3168 [42] Miyahara S and Ueda K 1999 Phys. Rev. Lett. 82 3701 [43] Haravifard S, Graf D, Feiguin A E, Batista C D, Lang J C, Silevitch D M, Srajer G, Gaulin B D, Dabkowska H A and Rosenbaum T F 2016 Nat. Commun. 7 11956 [44] Waki T, Arai K, Takigawa M, Saiga Y, Uwatoko Y, Kageyama H and Ueda Y 2007 J. Phys. Soc. Jpn. 76 073710 [45] Haravifard S, Banerjee A, Lang J C, Srajer G, Silevitch D M, Gaulin B D, Dabkowska H A and Rosenbaum T F 2012 Proc. Natl. Acad. Sci. USA 109 2286 [46] Loa I, Zhang F, Syassen K, Lemmens P, Crichton W, Kageyama H and Ueda Y 2005 Physica B 359-361 980 [47] Sakurai T, Tomoo M, Okubo S, Ohta H, Kudo K and Koike Y 2009 J. Phys.: Conf. Ser. 150 042171 [48] Larrea Jiménez J, Crone S P G, Fogh E, Zayed M E, Lortz R, Pom-jakushina E, Conder K, Läuchli A M, Weber L, Wessel S, Honecker A, Normand B, Rüegg C, Corboz P, Rønnow H M and Mila F 2020 arXiv:2009.14492 [49] Boos C, Crone S P G, Niesen I A, Corboz P, Schmidt K P and Mila F 2019 Phys. Rev. B 100 140413 [50] Wessel S, Niesen I, Stapmanns J, Normand B, Mila F, Corboz P and Honecker A 2018 Phys. Rev. B 98 174432 [51] Wietek A, Corboz P, Wessel S, Normand B, Mila F and Honecker A 2019 Phys. Rev. Research 1 033038 [52] White S R 1992 Phys. Rev. Lett. 69 2863 [53] Schollwöck U 2011 Annals of Physics 326 96 [54] Orús R 2014 Annals of Physics 349 117 [55] Corboz P and Mila F 2013 Phys. Rev. B 87 115144 [56] Prelovšek P and Kokalj J 2018 Phys. Rev. B 98 035107 [57] Chen B B, Chen L, Chen Z, Li W and Weichselbaum A 2018 Phys. Rev. X 8 031082 [58] Chen L, Qu D W, Li H, Chen B B, Gong S S, von Delft J, Weichselbaum A and Li W 2019 Phys. Rev. B 99 140404 [59] Shimokawa T 2020 arXiv:2012.15546 [60] Nakayama Y and Ohtsuki T 2016 Phys. Rev. Lett. 117 131601 [61] Kaul R K, Melko R G and Sandvik A W 2013 Annual Review of Condensed Matter Physics 4 179 [62] Sen A and Sandvik A W 2010 Phys. Rev. B 82 174428 [63] Takahashi J and Sandvik A W 2020 Phys. Rev. Research 2 033459 [64] Irkhin V Y and Katanin A A 1998 Phys. Rev. B 57 379 [65] Serna P and Nahum A 2019 Phys. Rev. B 99 195110 [66] Chakravarty S, Halperin B I and Nelson D R 1989 Phys. Rev. B 39 2344 [67] Sengupta P, Sandvik A W and Singh R R P3 2003 Phys. Rev. B 68 09442 [68] Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B and Xiang T 2017 Phys. Rev. Lett. 118 137202 [69] Sandvik A W 1999 Phys. Rev. B 59 R14157 [70] Sandvik A W 2010 Phys. Rev. Lett. 104 177201 [71] Sandvik A W 1999 J. Phys. A: Math. Gen. 25 3667 [72] Hasenbusch M 2010 Phys. Rev. B 82 174433 [73] Campostrini M, Hasenbusch M, Pelissetto A, Rossi P and Vicari E 2002 Phys. Rev. B 65 144520 [74] Aharony A 2002 Phys. Rev. Lett. 88 059703 [75] Aharony A 2002 J. Stat. Phys. 110 659 [76] Yu J, Roiban R, Jian S K and Liu C X 2019 Phys. Rev. B 100 075153 [77] Luck J M 1985 Phys. Rev. B 31 3069 [78] Gorbenko V, Rychkov S and Zan B 2018 J. High Energ. Phys. 2018 108 [79] Zhao B, Takahashi J and Sandvik A W 2020 Phys. Rev. B 101 157101 [80] Shao H, Guo W and Sandvik A W 2020 Phys. Rev. Lett. 124 080602 [81] Patil P, Shao H and Sandvik A W 2021 Phys. Rev. B 103 054418 [82] Wei Y, Ma X, Feng Z, Qi Y, Meng Z Y, Shi Y and Li S 2020 arXiv:2008.10182 [83] Yang J, Sandvik A W and Wang L 2021 arXiv:2104.08887

Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.