Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027301    DOI: 10.1088/1674-1056/abc0dd

Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes

Tao Fang(房涛)1, Ling-Qi Li(李灵琪)1, Guang-Rui Xia(夏光睿)1,2,†, and Hong-Yu Yu(于洪宇)1,
1 School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China; 2 Department of Materials Engineering, the University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
Abstract  With technology computer-aided design (TCAD) simulation software, we design a new structure of gallium oxide on gallium-nitride Schottky barrier diode (SBD). The parameters of gallium oxide are defined as new material parameters in the material library, and the SBD turn-on and breakdown behavior are simulated. The simulation results reveal that this new structure has a larger turn-on current than Ga2O3 SBD and a larger breakdown voltage than GaN SBD. Also, to solve the lattice mismatch problem in the real epitaxy, we add a ZnO layer as a transition layer. The simulations show that the device still has good properties after adding this layer.
Keywords:  technology computer-aided design (TCAD)      gallium oxide (Ga2O3)      gallium nitride (GaN)      Schottky barrier diode (SBD)  
Published:  26 January 2021
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions) (Semiconductors)  
  61.72.uj (III-V and II-VI semiconductors)  
  85.30.-z (Semiconductor devices)  
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇) Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes 2021 Chin. Phys. B 30 027301

1 Higashiwaki M, Murakami H, Kumagai Y and Kuramata A 2016 Jpn. J. Appl. Phys. 55 1202A1
2 Higashiwaki M, Kuramata A, Murakami H and Kumagai Y 2017 J. Phys. D: Appl. Phys. 50 333002
3 Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
4 Stepanov S I, Nikolaev V I, Bougrov V E and Romanov A E 2016 Rev. Adv. Mater. Sci. 44 63
5 He H, Blanco M A and Pandey R 2006 Appl. Phys. Lett. 88 261904
6 Baldini M, Galazka Z and Wagner G 2018 Mater. Sci. Semicond. Process. 78 132
7 Albanesi E A, Sferco S J, Lefebvre I, Allan G and Hollinger G 1992 Phys. Rev. B 46 13260
8 Osipov A V, Grashchenko A S and Kukushkin S A 2018 Continuum Mech. Thermodyn. 30 1059
9 Atlas user manual by Silvaco Corporation, 2012
10 Crosslight user manual by Crosslight Software Incorporation, 2019
11 Higashiwaki M, Sasaki H, Kuramata A, Masui T and Yamakoshi S 2012 Appl. Phys. Lett. 100 013504
12 Oda M, Tokuda R, Kambara H, Tanikawa T, Sasaki T and Hitora T 2016 Jpn. Soc. Appl. Phys. Express 9 No. 2
13 Hall R N 1951 Phys. Rev. 83 228
14 Meyaard D S, Lin G B, Cho J and Schubert E F2014 \em Nitride Semiconductor Light-Emitting Diodes (LEDs) pp. 279-300
15 Arrospide E, Bikandi I, Garcia G, Durana G and Zubia A J2017 \em Polymer Optical Fibres pp. 201-216
16 Meyaard D S, Lin G B, Cho J and Schubert E F2014 \em Materials, Technologies and Applications pp. 279-300
17 Zheng X F, Wang A C, Hou X H, Wang Y Z, Wen H Y, Wang C, Lu Y, Mao W, Ma X H and Hao Y 2017 Chin. Phys. Lett. 34 27301
18 Wang X, Chen L L, Cao Y R, Yang Q S, Zhu P M, Yang G F, Wang F X, Yan D W and Gu X F 2018 Acta Phys. Sin. 67 177202 (in Chinese)
19 Geng X L, Xia X C, Huang H L, Sun Z H, Zhang H Q, Cui X Z, Liang X H and Liang H W 2020 Chin. Phys. B 29 027201
20 Xue H W, He Q M, Jian G Z, Long S B, Pang T and Liu M 2018 \em Nanoscale Res. Lett. 13 290
21 Li G, Wang L Y, Song W D, Jiang J, Luo X J, Guo J Q, He L F, Zhang K, Wu Q B and Li S T 2019 Chin. Phys. B 28 058502
22 Takahashi K, Yoshikawa A and Sandhu A2007 \em Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices (Springer) p. 357
23 Ohta H, Kaneda N, Horikiri F, Narita Y, Yoshida T, Mishima T and Nakamura T 2015 IEEE Electron Dev. Lett. 36 11
[1] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[2] Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates
Xue Ji(吉雪), Wen-Xiu Dong(董文秀), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), Ke Xu(徐科). Chin. Phys. B, 2019, 28(6): 067701.
[3] GaN substrate and GaN homo-epitaxy for LEDs: Progress and challenges
Wu Jie-Jun, Wang Kun, Yu Tong-Jun, Zhang Guo-Yi. Chin. Phys. B, 2015, 24(6): 068106.
No Suggested Reading articles found!