Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 050701    DOI: 10.1088/1674-1056/ab7da2
GENERAL Prev   Next  

Hunting problems of multi-quadrotor systems via bearing-based hybrid protocols with hierarchical network

Zhen Xu(徐振)1,2, Xin-Zhi Liu(刘新芝)2, Qing-Wei Chen(陈庆伟)1, Zi-Xing Wu(吴梓杏)1,2
1 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Department of Applied Mathematics, University of Waterloo, Waterloo N2L 3G1, Canada
Abstract  Bearing-based hunting protocols commonly adopt a leaderless consensus method, which requests an entire state of the target for each agent and ignores the necessity of collision avoidance. We investigate a hunting problem of multi-quadrotor systems with hybrid bearing protocols, where the quadrotor systems are divided into master and slave groups for reducing the onboard loads and collision avoidance. The masters obtain the entire state of the target, whose hybrid protocols are based on the displacement and bearing constraints to maintain formation and to avoid the collision in the hunting process. However, the slaves' protocols merely depend on the part state of the masters to reduce loads of data transmission. We also investigate the feasibility of receiving the bearing state from machine vision. The simulation results are given to illustrate the effectiveness of the proposed hybrid bearing protocols.
Keywords:  hunting problem      multi-quadrotor system      bearing constraint      hierarchical network  
Received:  21 January 2020      Revised:  20 February 2020      Accepted manuscript online: 
PACS:  07.05.Dz (Control systems)  
  02.30.Yy (Control theory)  
  02.20.-a (Group theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61673217 and 61673214), the National Defense Basic Scientific Research Program of China (Grant No. JCKY2019606D001), and the China Scholarship Council.
Corresponding Authors:  Qing-Wei Chen     E-mail:  xz940706@163.com

Cite this article: 

Zhen Xu(徐振), Xin-Zhi Liu(刘新芝), Qing-Wei Chen(陈庆伟), Zi-Xing Wu(吴梓杏) Hunting problems of multi-quadrotor systems via bearing-based hybrid protocols with hierarchical network 2020 Chin. Phys. B 29 050701

[1] Liu S and Hu L 2019 Proc. 12th International Conference on Intelligent Robotics and Applications, August 8-11, 2019, Shenyang, China, p. 267
[2] Hua Y Z, Dong X W, Hu G Q, Li Q D and Ren Z 2019 IEEE Trans. Automat. Control. 64 4292
[3] Wang X H, Chen Z Q and Yuan Z Z 2015 J. Franklin Institute 352 5437
[4] Gao M X, Xu X W, Klinger Y, Woerd J and Tapponnier P 2017 Sci. Rep. 7 8281
[5] Pang S K, Wang J, Liu J Y and Yi H 2018 Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 232 819
[6] Roy D, Chowdhury A, Maitra M and Bhattacharya S 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) October 1-5, 2018, Madrid, Spain, pp. 4854-4861
[7] Liu X Z, Zhang K X and Xie W C 2018 Nonlinear Anal-Hybri. 30 134
[8] Zou W C and Xiang Z R 2018 IEEE Trans. Systems, Man, and Cybernetics: Systems 49 2478
[9] Min H F, Xu S Y, Li Y M, Chu Y M, Wei Y L and Zhang Z Q 2018 J. Franklin Institute 355 2645
[10] Oh K K, Park M C and Ahn H S 2015 Automatica 53 424
[11] Wu Z X, Sun J S and Wang X M 2018 Chin. Phys. B 27 060202
[12] Tron R, Thomas J, Loianno G, Daniilidis K and Kumar V 2016 IEEE Contr. Syst. Mag. 36 44
[13] Eren T 2011 Eurasip J. Wirel. Commun. 1 72
[14] Zhao S Y and Zelazo D 2016 IEEE Trans. Automat. Control. 61 1255
[15] Tran Q V, Park S H and Ahn H S 2018 IEEE Conference on Control Technology and Applications (CCTA), August 21-24, Copenhagen, Denmark, pp. 658-663
[16] Zeng Z W 2017 Multi-agent Coordination Control with Nonlinear Dynamics, Quantized Communication and Structure-constraint (PhD Dissertation) (Changsha: National University of Defense Technology) (in Chinese)
[17] Li X L, Luo X Y, Wang J E, Zhu Y K and Guan X P 2018 Neurocomputing 306 234
[18] Kim H, Lee D, Oh T, Lee S W, Choe Y and Myung H 2013 Robot Intelligence Technology and Applications 2 3
[19] Liu J K 2015 Sliding mode control design and MATLAB simulation: the design method of advanced control system (Beijing: Tsinghua University Press) pp. 379-385
[20] Bouzid Y, Siguerdidjane H and Bestaoui Y 2018 Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 232 709
[21] Milford M J, Schill F, Corke P, Mahony R and Wyeth G 2011 IEEE Int. Conf. Rob. Autom. May 9-13, Shanghai, China, 2506
[22] Scaramuzza D and Fraundorfer F 2011 IEEE Robot. Autom. Mag. 18 80
[23] Somasundaram G, Cherian A, Morellas V and Papanikolopoulos N 2014 Comput. Vis. Image Und. 123 1
[24] Bai L, Chen F and Lan W Y 2015 Chin. Phys. B 24 090206
[1] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[2] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[3] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[4] Nonlinear suboptimal tracking control of spacecraft approaching a tumbling target
Zhan-Peng Xu(许展鹏), Xiao-Qian Chen(陈小前), Yi-Yong Huang(黄奕勇), Yu-Zhu Bai(白玉铸), Wen Yao(姚雯). Chin. Phys. B, 2018, 27(9): 090501.
[5] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[6] Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor—actuator networks
Jian-Zhong Zhang(张建中), Bao-Tong Cui(崔宝同), Bo Zhuang(庄波). Chin. Phys. B, 2017, 26(9): 090201.
[7] Rigidity based formation tracking for multi-agent networks
Bai Lu, Chen Fei, Lan Wei-Yao. Chin. Phys. B, 2015, 24(9): 090206.
[8] Cooperative adaptive bidirectional control of a train platoon for efficient utility and string stability
Gao Shi-Gen, Dong Hai-Rong, Ning Bin, Roberts Clive, Chen Lei, Sun Xu-Bin. Chin. Phys. B, 2015, 24(9): 090506.
[9] Robust output feedback cruise control for high-speed train movement with uncertain parameters
Li Shu-Kai, Yang Li-Xing, Li Ke-Ping. Chin. Phys. B, 2015, 24(1): 010503.
[10] An autobias control system for the electro–optic modulator used in a quantum key distribution system
Chen Wen-Fen, Wei Zheng-Jun, Guo Li, Hou Li-Yan, Wang Geng, Wang Jin-Dong, Zhang Zhi-Ming, Guo Jian-Ping, Liu Song-Hao. Chin. Phys. B, 2014, 23(8): 080304.
[11] Optimal switching policy for performance enhancement of distributed parameter systems based on event-driven control
Mu Wen-Ying, Cui Bao-Tong, Lou Xu-Yang, Li Wen. Chin. Phys. B, 2014, 23(7): 070204.
[12] Distributed formation control for a multi-agent system with dynamic and static obstacle avoidances
Cao Jian-Fu, Ling Zhi-Hao, Yuan Yi-Feng, Gao Chong. Chin. Phys. B, 2014, 23(7): 070509.
[13] Tracking problem under a time-varying topology
Dong Li-Jing, Chai Sen-Chun, Zhang Bai-Hai, Nguang Sing-Kiong. Chin. Phys. B, 2014, 23(6): 060502.
[14] Tracking of a third-order maneuvering target under an arbitrary topology
Dong Li-Jing, Chai Sen-Chun, Zhang Bai-Hai. Chin. Phys. B, 2014, 23(1): 010508.
[15] An linear matrix inequality approach to global synchronisation of non-parameter perturbations of multi-delay Hopfield neural network
Shao Hai-Jian, Cai Guo-Liang, Wang Hao-Xiang. Chin. Phys. B, 2010, 19(11): 110512.
No Suggested Reading articles found!