Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 025204    DOI: 10.1088/1674-1056/ab6719

The E×B drift instability in Hall thruster using 1D PIC/MCC simulation

Zahra Asadi1, Mehdi Sharifian1, Mojtaba Hashemzadeh2, Mahmood Borhani Zarandi1, Hamidreza Ghomi Marzdashti3
1 Physics Department, Yazd University, Safaiyeh, Yazd, Iran;
2 Faculty of Physics, Shahrood University of Technology, Shahrood, Iran;
3 Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran
Abstract  The E×B drift instability is studied in Hall thruster using one-dimensional particle in cell (PIC) simulation method. By using the dispersion relation, it is found that unstable modes occur only in discrete bands in k space at cyclotron harmonics. The results indicate that the number of unstable modes increases by increasing the external electric field and decreases by increasing the radial magnetic field. The ion mass does not affect the instability wavelength. Furthermore, the results confirm that there is an instability with short wavelength and high frequency. Finally, it is shown that the electron and ion distribution functions deviate from the initial state and eventually the instability is saturated by ion trapping in the azimuthal direction. Also for light mass ion, the frequency and phase velocity are very high that could lead to high electron mobility in the axial direction.
Keywords:  plasma      Hall thruster      particle in cell (PIC) simulation      drift instability     
Received:  15 October 2019      Published:  05 February 2020
PACS:  52.65.-y (Plasma simulation)  
  52.75.Di (Ion and plasma propulsion)  
  52.25.Dg (Plasma kinetic equations)  
  52.35.Ra (Plasma turbulence)  
Corresponding Authors:  Mehdi Sharifian     E-mail:

Cite this article: 

Zahra Asadi, Mehdi Sharifian, Mojtaba Hashemzadeh, Mahmood Borhani Zarandi, Hamidreza Ghomi Marzdashti The E×B drift instability in Hall thruster using 1D PIC/MCC simulation 2020 Chin. Phys. B 29 025204

[1] Goebel, D M and Katz I 2008 Fundam. Electric Propulsion: Ion Hall Thrusters (New York: John Wiley & Sons)
[2] Boeuf J P 2017 J. Appl. Phys. 121 011101
[3] Kim V 1998 J. Propul. Power 14 736
[4] Macdonald M and Badescu V 2014 The international handbook of space technology (Berlin: Springer)
[5] Wu Z W, Yu D R and Wang X G 2006 Vacuum 80 1376
[6] Brieda L and Keidar M 2012 J. Appl. Phys. 111 123302
[7] Taccogna F, Longo S and Capitelli M 2004 Vacuum 73 89
[8] Ding Y, et al. 2017 J. Phys. D: Appl. Phys. 50 145203
[9] Liu H, et al. 2010 J. Phys. D: Appl. Phys. 43 165202
[10] Boniface C, et al. 2006 Appl. Phys. Lett. 89 161503
[11] Meezan, N B, W A Hargus Jr and Cappelli M A 2001 Phys. Rev. E 63 026410
[12] Taccogna F, et al. 2009 Appl. Phys. Lett. 94 251502
[13] Raitses Y, et al. 2011 IEEE. T. Plasma. Sci. 39 995
[14] Keidar M and Beilis I I 2006 IEEE. T. Plasma. Sci. 34 804
[15] Lafleur T and Chabert P 2017 Plasma. Sources. Sci. T. 27 015003
[16] Ducrocq A, et al. 2006 Phys. Plasmas 13 102111
[17] Gary S P and Sanderson J 1970 J. Plasma. Phys. 4 739
[18] Gary S P 1970 J. Plasma. Phys. 4 753
[19] Litvak A A, Raitses Y and Fisch N J 2004 Phys. Plasmas 11 1701
[20] McDonald M S, et al. 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
[21] Lafleur T, Baalrud S and Chabert P 2016 Phys. Plasmas 23 053502
[22] Choueiri E 2001 Phys. Plasmas 8 1411
[23] Cavalier J, et al. 2013 Phys. Plasmas 20 082107
[24] Lampe M, et al. 1972 Phys. Fluids 15 662
[25] Mangeney A, et al. 2002 J. Comput. Phys. 179 495
[26] Hockney R W and Eastwood J W 1988 Computer simulation using particles (New York: CRC Press)
[27] Birdsall C K and Langdon A B 2004 Plasma physics via computer simulation (New York: CRC Press)
[28] Tskhakaya D, et al. 2007 Contrib. Plasma. Phys. 47 563
[29] Asadi Z, et al. 2019 Front. Phys. 7 140
[30] Napolitano M 1985 Commun. Applied Numerical Methods 1 11
[31] Escobar D and Ahedo E 2014 IEEE. Trans. Plasma Sci. 43 149
[32] Boeuf J and Garrigues L 2018 Phys. Plasmas 25 061204
[33] Smith A W and Cappelli M A 2009 Phys. Plasmas 16 073504
[34] Che H, et al. 2009 Phys. Rev. Lett. 102 145004
[35] Che H, et al. 2010 Geophys. Res. Lett. 37 L11105
[36] Jain N, Umeda T and Yoon P H 2011 Plasma. Phys. Contr. F 53 025010
[37] Vivien C, et al. 2017 Plasma. Sources. Sci. T. 26 034001
[38] Taccogna F, et al. 2019 Plasma. Sources. Sci. T 28 064002
[1] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[2] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[3] Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST
Yan Chao(晁燕), Liqing Xu(徐立清), Liqun Hu(胡立群), Yanmin Duan(段艳敏), Tianbo Wang(王天博), Yi Yuan(原毅), Yongkuan Zhang(张永宽). Chin. Phys. B, 2020, 29(9): 095201.
[4] Research of influence of the additional electrode on Hall thruster plume by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2020, 29(9): 095204.
[5] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[6] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
[7] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[8] Analysis of extreme ultraviolet spectra of laser-produced Cd plasmas
Mohammedelnazier Bakhiet, Maogen Su(苏茂根), Shiquan Cao(曹世权), Qi Min(敏琦), Duixiong Sun(孙对兄), Siqi He(何思奇), Lei Wu(吴磊), Chenzhong Dong(董晨钟). Chin. Phys. B, 2020, 29(7): 075203.
[9] Discharge and flow characterizations of the double-side sliding discharge plasma actuator
Qi-Kun He(贺启坤), Hua Liang(梁华), Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2020, 29(6): 064702.
[10] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[11] Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma
M S Alam, M R Talukder. Chin. Phys. B, 2020, 29(6): 065202.
[12] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
[13] Simulation of helium supersonic molecular beam injection in tokamak plasma
Xue-Ke Wu(吴雪科), Zhan-Hui Wang(王占辉), Hui-Dong Li(李会东), Li-Ming Shi(石黎铭), Di Wan(万迪), Qun-Chao Fan(樊群超), Min Xu(许敏). Chin. Phys. B, 2020, 29(6): 065201.
[14] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[15] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
No Suggested Reading articles found!