Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 023701    DOI: 10.1088/1674-1056/28/2/023701

Comparison of single-neutral-atom qubit between in bright trap and in dark trap

Ya-Li Tian(田亚莉)1, Zhi-Hui Wang(王志辉)1, Peng-Fei Yang(杨鹏飞)1, Peng-Fei Zhang(张鹏飞)1,2, Gang Li(李刚)1,2, Tian-Cai Zhang(张天才)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

A single neutral atom is one of the most promising candidates to encode a quantum bit (qubit). In a real experiment, a single neutral atom is always confined in a micro-sized far off-resonant optical trap (FORT). There are generally two types of traps:red-detuned trap and blue-detuned trap. We experimentally compare the qubits encoded in “clock states” of single cesium atoms confined separately in either 1064-nm red-detuned (bright) trap or 780-nm blue-detuned (dark) trap:both traps have almost the same trap depth. A longer lifetime of 117 s and a longer coherence time of about 10 ms are achieved in the dark trap. This provides a direct proof of the superiority of the dark trap over the bright trap. The measures to further improve the coherence are discussed.

Keywords:  single qubit      laser trapping      coherence time  
Received:  11 October 2018      Revised:  03 December 2018      Accepted manuscript online: 
PACS:  37.10.Jk (Atoms in optical lattices)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  34.80.Pa (Coherence and correlation)  

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502) and the National Natural Science Foundation of China (Grant Nos. 11634008, 11674203, 11574187, and 61227902), and the Fund for Shanxi “1331 Project” Key Subjects Construction, Shanxi Province, China.

Corresponding Authors:  Gang Li, Tian-Cai Zhang     E-mail:;

Cite this article: 

Ya-Li Tian(田亚莉), Zhi-Hui Wang(王志辉), Peng-Fei Yang(杨鹏飞), Peng-Fei Zhang(张鹏飞), Gang Li(李刚), Tian-Cai Zhang(张天才) Comparison of single-neutral-atom qubit between in bright trap and in dark trap 2019 Chin. Phys. B 28 023701

[1] Nielsen M A and Chuang I L 2000 Quantum Compututation and Quantum Information, 10th Edn. (New York: Cambridge University Press) p. 2
[2] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Phys. Rev. Lett. 104 010503
[3] Grimm R, Weidemller M and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95
[4] Schlosser N, Reymond G, Protsenko I and Grangier P 2001 Nature 411 1024
[5] Miller J D, Cline R A and Heinzen D J 1993 Phys. Rev. A 47 R4567
[6] Wang Z H, Li G, Tian Y L and Zhang T C 2014 Front. Phys. 9 634
[7] Puppe T, Schuster I, Grothe A, Kubanek A, Murr K, Pinkse P W H and Rempe G 2007 Phys. Rev. Lett. 99 013002
[8] Li G, Zhang S, Isenhower L, Maller K and Saffman M 2012 Opt. Lett. 37 851
[9] Xu P, He X D, Wang J and Zhan M S 2010 Opt. Lett. 35 2164
[10] Gibbons M J, Kim S Y, Fortier K M, Ahmadi P and Chapman M S 2008 Phys. Rev. A 78 043418
[11] Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rauschenbeutel A and Meschede D 2005 Phys. Rev. A 72 023406
[12] Rosenbusch P, Ghezali S, Dzuba V A, Flambaum V V, Beloy K and Derevianko A 2009 Phys. Rev. A 79 013404
[13] Derevianko A 2010 Phys. Rev. Lett. 105 033002
[14] Carr A W and Saffman M 2016 Phys. Rev. Lett. 117 150801
[15] Wang J L, Li G, Tian Y L and Zhang T C 2015 J. Quantum Opt. 21 74 (in Chinese)
[16] Schlosser N, Reymond G and Grangier P 2002 Phys. Rev. Lett. 89 023005
[17] DePue M T, McCormick C, Winoto S L, Oliver S and Weiss D S 1999 Phys. Rev. Lett. 82 2262
[18] Grünzweig T, Hilliard A, McGovern M and Andersen M F 2010 Nature 6 951
[19] Carpentier A V, Fung Y H, Sompet P, Hilliard A J, Walker G T and Andersen M F 2013 Laser Phys. Lett. 10 125501
[20] Diao W T, He J, Liu B, Wang J Y, Wang J M 2014 Acta Phys. Sin. 63 023701 (in Chinese)
[21] Steane A M, Chowdhury M and Foot C J 1992 J. Opt. Soc. Am. B 9 2142
[22] Gehm M E, O'Hara K M, Savard T A and Thomas J E 1998 Phys. Rev. A 58 3914
[23] Tuchendler C, Lance A M, Browaeys A, Sortais Y R P and Grangier P 2008 Phys. Rev. A 78 033425
[24] Yang J H, He X D, Guo R J, Xu P, Wang K P, Sheng C, Liu M, Wang J, Derevianko A and Zhan M S 2016 Phys. Rev. Lett. 117 123201
[1] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[2] Microtrap on a concave grating reflector for atom trapping
Hui Zhang(张 慧), Tao Li(李涛), Ya-Ling Yin(尹亚玲), Xing-Jia Li(李兴佳), Yong Xia(夏 勇), Jian-Ping Yin(印建平). Chin. Phys. B, 2016, 25(8): 087802.
[3] Controlled decoherence of three-level rf-SQUID qubit with asymmetric potential
Ji Ying-Hua, Lai Hui-Fang, Cai Shi-Hua, Wang Zi-Sheng. Chin. Phys. B, 2010, 19(3): 030310.
[4] Controlled decoherence of floating flux qubits
Ji Ying-Hua, Xu Lin. Chin. Phys. B, 2010, 19(11): 110305.
[5] Preparation of arbitrary n-particle d-dimensional superposition states using only single qubit operations and CNOT gates
Wang Yan-Hui, Fang Mao-Fa. Chin. Phys. B, 2004, 13(10): 1644-1648.
No Suggested Reading articles found!