Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080402    DOI: 10.1088/1674-1056/27/8/080402
GENERAL Prev   Next  

Correlation method estimation of the modulation signal in the weak equivalence principle test

Jie Luo(罗杰)1, Liang-Cheng Shen(沈良程)1, Cheng-Gang Shao(邵成刚)2, Qi Liu(刘祺)3, Hui-Jie Zhang(张惠捷)1
1 School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China;
2 MOE Key Laboratory of Fundamental Physical Quantities Measurements, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
3 TIANQIN Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China
Abstract  

In a test of the weak equivalence principle (WEP) with a rotating torsion pendulum, it is important to estimate the amplitude of the modulation signal with high precision. We use a torsional filter to remove the free oscillation signal and employ the correlation method to estimate the amplitude of the modulation signal. The data analysis of an experiment shows that the uncertainties of amplitude components of the modulation signal obtained by the correlation method are in agreement with those due to white noise. The power spectral density of the modulation signal obtained by the correlation method is about one order higher than the thermal noise limit. It indicates that the correlation method is an effective way to estimate the amplitude of the modulation signal and it is instructive to conduct a high-accuracy WEP test.

Keywords:  weak equivalence principle test      correlation method      amplitude estimation      thermal noise limit  
Received:  04 April 2018      Revised:  18 May 2018      Accepted manuscript online: 
PACS:  04.80.Cc (Experimental tests of gravitational theories)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11575160, 91636221, and 11605065).

Corresponding Authors:  Cheng-Gang Shao, Qi Liu     E-mail:  cgshao@hust.edu.cn;louis_liuqi@hust.edu.cn

Cite this article: 

Jie Luo(罗杰), Liang-Cheng Shen(沈良程), Cheng-Gang Shao(邵成刚), Qi Liu(刘祺), Hui-Jie Zhang(张惠捷) Correlation method estimation of the modulation signal in the weak equivalence principle test 2018 Chin. Phys. B 27 080402

[1] Choi K Y 2006 “A new equivalence principle test using a rotating torsion balance”, Ph. D. Dissertation (Washington: University of Washington)
[2] Su Y 1992 “A new test of the weak equivalence principle”, Ph. D. Dissertation (Washington: University of Washington)
[3] Zhou Z B, Luo J, Dan Q, Wu Z G, Zhang Y Z and Nie Y X 2002 Phys. Rev. D 66 022002
[4] Damour T 1996 Class. & Quantum Gravity 13 A33
[5] Zhu L, Liu Q, Zhao H H, Feng W F, Yang S Q, Shao C G, Tu L C and Luo J 1999 Phys. Rev. Lett. 83 3585
[6] Baeßler S, Heckel B R, Adelberger E G, Gundlach J H, Schmidt U and Swanson H E 1999 Phys. Rev. Lett. 83 3585
[7] Scherk J and Schwarz J H 1974 Phys. Lett. B 52 347
[8] Damour T and Polyakov A M 1994 Nucl. Phys. B 423 532
[9] Damour T and Vokrouhlický D 1996 Phys. Rev. D 53 4177
[10] Fayet P 2003 Ada. Space. Res. 13 1289
[11] Fayet P 1986 Phys. Lett. B 172 363
[12] Newton I 1687 Philosophiae Naturalis Principia Mathematica (London: Joseph Streater)
[13] Eötvös R V, Pekar D and Fekete E 1922 Ann. Phys. 68 11
[14] Roll P G, Krotkov R and Dicke R H 1964 Ann. Phys. 26 442
[15] Braginsky V B and Panov V I 1972 Gen. Relativ. & Gravit. 3 403
[16] Koester L 1976 Phys. Rev. D. Part. & Fields 14 907
[17] Schlamminger S, Choi K Y, Wagner T A, Gundlach J H and Adelberger E G 2008 Phys. Rev. Lett. 100 041101
[18] Gundlach J H, Schlamminger S and Wagner T 2009 Space Sci. Rev. 148 201
[19] Duan X C, Deng X B, Zhou M K, Zhang K, Xu W J and Xiong F 2016 Phys. Rev. Lett. 117 023001
[20] Zhou L, Long S, Tang B, Chen X, Gao F and Peng W 2015 Phys. Rev. Lett. 115 013004
[21] Tian Y L, Tu Y and Shao C G 2004 Rev. Sci. Instrum. 75 1971
[22] Wang D H, Luo J and Luo K 2006 Rev. Sci. Instrum. 77 104501
[23] Xu J H, Shao C G, Luo J, Liu Q, Zhu L and Zhao H H 2017 Chin. Phys. B 26 080401
[24] Shao C G, Luan E J and Luo J 2003 Rev. Sci. Instrum. 74 2849
[25] Luo J, Tian Y, Shao C G and Wang D H 2015 Chin. Phys. B 24 030401
[26] Wu W H, Tian Y, Luo J, Shao C G, Xu J H and Wang D H 2016 Rev. Sci. Instrum. 87 094501
[27] Lamoreaux S K and Buttler W T 2005 Phys. Rev. E 71 036109
[28] Luo J, Shao C G and Wang D H 2009 Class. Quantum. Grav. 26 195005
[29] Zhan W Z, Luo J, Shao C G, Zheng D, Yin W M and Wang D H 2017 Chin. Phys. B 26 090401
[1] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[2] Optimal estimation of the amplitude of signal with known frequency in the presence of thermal noise
Jie Luo(罗杰), Jun Ke(柯俊), Yi-Chuan Liu(柳一川), Xiang-Li Zhang(张祥莉), Wei-Ming Yin(殷蔚明), Cheng-Gang Shao(邵成刚). Chin. Phys. B, 2019, 28(10): 100401.
[3] Determination of the thermal noise limit in test of weak equivalence principle with a rotating torsion pendulum
Wen-Ze Zhan(占文泽), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚), Di Zheng(郑第), Wei-Ming Yin(殷蔚明), Dian-Hong Wang(王典洪). Chin. Phys. B, 2017, 26(9): 090401.
[4] Effect of gravity gradient in weak equivalence principle test
Jia-Hao Xu(徐家豪), Cheng-Gang Shao(邵成刚), Jie Luo(罗杰), Qi Liu(刘祺), Lin Zhu(邾琳), Hui-Hui Zhao(赵慧慧). Chin. Phys. B, 2017, 26(8): 080401.
[5] Correction of cosine oscillation to the improved correlation method of estimating the amplitude of gravitational background signal
Wei-Huang Wu(巫伟皇), Yuan Tian(田苑), Chao Xue(薛超), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚). Chin. Phys. B, 2017, 26(4): 040401.
[6] Influence of the environmental noise on determining the period of a torsion pendulum
Luo Jie, Tian Yuan, Shao Cheng-Gang, Wang Dian-Hong. Chin. Phys. B, 2015, 24(3): 030401.
[7] Four-dimensional parameter estimation of plane waves using swarming intelligence
Fawad Zaman, Ijaz Mansoor Qureshi, Fahad Munir, Zafar Ullah Khan. Chin. Phys. B, 2014, 23(7): 078402.
[8] Charge density at the nucleus and radial behavior of ground state for lithium-like ions with Z = 21 to 30
Yu Wei-Wei, Wang Zhi-Wen, Chen Chao, Cai Juan, Zhang Nan. Chin. Phys. B, 2012, 21(7): 073102.
[9] Resonance calculations of d-f intervals for the lithium Rydberg states
Chen Chao, Wang Zhi-Wen. Chin. Phys. B, 2005, 14(3): 505-510.
No Suggested Reading articles found!