Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 094221    DOI: 10.1088/1674-1056/25/9/094221
SPECIAL TOPIC—Physical research in liquid crystal Prev   Next  

Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method

Hu Dou(窦虎)1, Hongmei Ma(马红梅)1,2, Yu-Bao Sun(孙玉宝)1,2
1. Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China;
2. Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, China
Abstract  The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display. Compared with the matrix optic methods and the refractive method, the finite-difference time-domain method, which is used to directly solve Maxwell's equations, can consider the lateral variation of the refractive index and obtain an accurate convergence effect. The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage. The finite-difference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
Keywords:  finite-difference time-domain method      blue phase liquid crystal display      in-plane switching      convergence effect  
Received:  06 May 2016      Revised:  19 July 2016      Published:  05 September 2016
PACS:  42.79.Kr (Display devices, liquid-crystal devices)  
  61.30.Cz (Molecular and microscopic models and theories of liquid crystal structure)  
  61.30.Mp (Blue phases and other defect-phases)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304074, 61475042, and 11274088), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2015202320 and GCC2014048), and the Key Subject Construction Project of Hebei Province University, China.
Corresponding Authors:  Yu-Bao Sun     E-mail:

Cite this article: 

Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝) Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method 2016 Chin. Phys. B 25 094221

[1] Choi S W, Yamamoto S I, Haseba Y, Higuchi H and Kikuchi H 2008 Appl. Phys. Lett. 92 043119
[2] Chen K M, Gauza S, Xianyu H and Wu S T 2010 J. Disp. Technol. 6 49
[3] Zhao Y, Sun Y, Li Y and Ma H 2014 Liq. Cryst. 41 1583
[4] Jones R C 1941 J. Opt. Soc. Am. 31 488
[5] Berreman D W 1972 J. Opt. Soc. Am. 62 502
[6] Lien A 1990 Appl. Phys. Lett. 57 2767
[7] Yang D K and Wu S T 2015 Fundamentals of Liquid Crystal Devices (Chichester: John Wiley & Sons, Ltd)
[8] Rao L, Yan J, Wu S T, Yamomoto S and Haseba Y 2011 Appl. Phys. Lett. 98 081109
[9] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[10] Kriezis E E and Elston S J 1999 Opt. Commun. 165 99
[11] Kriezis E E and Elston S J 2000 Opt. Commun. 177 69
[12] Hwang D K and Rey A D 2005 Appl. Optics 44 4513
[13] Prokopidis K P, Zografopoulos D C and Kriezis E E 2013 J. Opt. Soc. Am. B 30 2722
[14] Ogawa Y, Fukuda J I, Yoshida H and Ozaki M 2013 Opt. Lett. 38 3380
[15] Dou H, Yu Y, Ma H and Sun Y 2015 Chin. J. Liq. Cryst. Disp. 30 16
[16] Dou H, Yu Y, Ma H and Sun Y 2015 Chin. J. Liq. Cryst. Disp. 30 381
[17] Dou H, Ma H and Sun Y 2015 Acta Phys. Sin. 64 126101 (in Chinese)
[18] Xu D, Chen Y, Liu Y and Wu S T 2013 Opt. Express 21 24721
[19] Berenger J P 1994 J. Comput. Phys. 114 185
[20] Yan J, Cheng H C, Gauza S, Li Y, Jiao M, Rao L and Wu S T 2010 Appl. Phys. Lett. 96 071105
[1] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[2] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[3] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
[4] Rear-surface light intensification caused by Hertzian-conical crack in 355-nm silica optics
Zhang Chun-Lai, Yuan Xiao-Dong, Xiang Xia, Wang Zhi-Guo, Liu Chun-Ming, Li Li, He Shao-Bo, Zu Xiao-Tao. Chin. Phys. B, 2012, 21(9): 094213.
[5] Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs
Ren Cheng, Cheng Li-Feng, Kang Feng, Gan Lin, Zhang Dao-Zhong, Li Zhi-Yuan. Chin. Phys. B, 2012, 21(10): 104210.
[6] Bandgap characteristics of 2D plasma photonic crystal with oblique incidence:TM case
Xie Ying-Tao, Yang Li-Xia. Chin. Phys. B, 2011, 20(6): 060201.
[7] Splitting the surface wave in metal/dielectric nanostructures
Zhu Song, Wu Jian. Chin. Phys. B, 2011, 20(6): 067901.
[8] Engineering the light propagating features through the two-dimensional coupled-cavity photonic crystal waveguides
Feng Shuai, Wang Yi-Quan. Chin. Phys. B, 2011, 20(5): 054209.
[9] A numerical simulation of surface wave excitation in a rectangular planar-type plasma source
Chen Zhao-Quan, Liu Ming-Hai, Lan Chao-Hui, Chen Wei, Tang Liang, Luo Zhi-Qing, Yan Bao-Rong, Lü Jian-Hong, Hu Xi-Wei. Chin. Phys. B, 2009, 18(8): 3484-3489.
[10] A virtual optical probe based on evanescent wave interference
Sun Li-Qun, Wang Jia, Hong Tao, Tian Qian. Chin. Phys. B, 2002, 11(10): 1022-1027.
No Suggested Reading articles found!