Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076201    DOI: 10.1088/1674-1056/25/7/076201
Special Issue: TOPICAL REVIEW — High pressure physics
TOPICAL REVIEW—High pressure physics Prev   Next  

How to detect melting in laser heating diamond anvil cell

Liuxiang Yang(杨留响)1,2
1 Center for High Pressure Science and Technology Advanced Research, Shanghai;
2 High Pressure Synergetic Consortium, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439, USA

Research on the melting phenomenon is the most challenging work in the high pressure/temperature field. Until now, large discrepancies still exist in the melting curve of iron, the most interesting and extensively studied element in geoscience research. Here we present a summary about techniques detecting melting in the laser heating diamond anvil cell.

Keywords:  high pressure      laser      melting      diamond anvil cell  
Received:  11 March 2016      Revised:  04 May 2016      Published:  05 July 2016
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  42.62.-b (Laser applications) (Melting of specific substances)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Corresponding Authors:  Liuxiang Yang     E-mail:

Cite this article: 

Liuxiang Yang(杨留响) How to detect melting in laser heating diamond anvil cell 2016 Chin. Phys. B 25 076201

[1] Bridgman P 1952 Proceedings of the American of Arts and Sciences 81 167
[2] Block S and Piermarini G 1976 Physics Today 29 44
[3] Xu J, Mao H and Bell P 1986 Science 232 1404
[4] Boehler R 1986 Geophys. Res. Lett. 13 1153
[5] Zha C, Bassett W and Shim S 2004 Rev. Sci. Instrum. 75 2409
[6] Jenei Z, Cynn H, Visbeck K and Evans W 2013 Rev. Sci. Instrum. 84 095114
[7] Fan D, Zhou W, Wei S, Liu Y, Ma M and Xie H 2010 Rev. Sci. Instrum. 81 053903
[8] Meng Y, Hrubiak R, Rod E, Boehler R and Shen G 2015 Rev. Sci. Instrum. 86 072201
[9] Ming L and Bassett W 1974 Rev. Sci. Instrum. 45 1115
[10] Petitgirard S, Salamat A, Beck P, Weck G and Bouvier P 2014 J. Synchrotron Rad. 21 89
[11] Bassett W 2001 Rev. Sci. Instrum. 72 1270
[12] Shen G, Wang L, Ferry R, Mao H and Hemely R 2010 Journal of Physics: Conference Series 215 012191
[13] Boehler R, Musshoff H, Ditz R, Aquilanti G and Trapananti A 2009 Rev. Sci. Instrum. 80 045103
[14] Goncharov A, Montoya J, Subramanian N, Struzhkin V, Kolesnikov A, Somayazulu M and Hemely R 2009 J. Synchrotron Rad. 16 769
[15] Boehler R 2000 Rev. Geophys. 38 221
[16] Jephcoat A and Besedin S 1996 Philosophical Transactions: Mathematical, Physical and Engineering Sciences 354 1333
[17] James A and Lord M 1992 Macmillan's Chemical and Physical data (London: Macmillan)
[18] Errandonea D, Somayazulu M, Häusermann and Mao H 2003 J. Phys.: Condens. Matter 15 7635
[19] Anzelini S, Dewaele A, Mezouar M, Loubeyre P and Mozard G 2013 Science 340 464
[20] Lord O, Wann E, Hunt S, Walker A, Santangeli J, Walter M, Dobson D, Wood I, Vočadlo L, Morard G and Mezouar M 2014 Phys. EarthPlanet. Inter. 233 13
[21] Lord O, Wood I, Dobson D, Vočadlo L, Wang W, Thomson A, Wann E, Morard G, Mezouar M and Walter M 2014 Earth Planet. Sci. Lett. 408 226
[22] Marvin R, Boehler R and Errandonea D 2007 Phys. Rev. B 76 184117
[23] Boehler R, Marvin R and Boercker D 1996 Phys. Rev. B 53 556
[24] Boehler R, Marvin R and Boercker D 2001 Phys. Rev. Lett. 86 5731
[25] Mukherjee G and Boehler R 2007 Phys. Rev. Lett. 99 225701
[26] Schwager B, Marvin R, Japel S and Boehler R 2010 J. Chem. Phys. 133 084501
[27] Japel S, Schwager B, Boehler R and Marvin R 2005 Phys. Rev. Lett. 95 167801
[28] Schwager B and Boehler R 2008 High. Pressure Res. 28 431
[29] Marvin R, Errandonea D and Boehler R 2007 Phys. Rev. B 76 184118
[30] Ruiz-Fuertes J, Karandikar A, Boehler R and Errandonea D 2010 Phys. EarthPlanet. Inter. 181 69
[31] Zerr A, Diegeler A and Boehler R 1998 Science 281 243
[32] Yang L, Karandikar A and Boehler R 2012 Rev. Sci. Instrum. 83 063905
[33] Shen G and Lazor P 1995 J. Geophys. Res. 100 17699
[34] Saxena S, Shen G and Lazor P 1994 Science 264 405
[35] Geballe Z and Jeanloz R 2012 J. Appl. Phys. 111 123518
[36] Ivelev G and Gatskevich 2000 Semiconuctors 34 759
[37] Eggert J, Hicks D, Celliers P, Bradley D, McWilliams R, Jeanloz R, Miller J, Boehly T and Collins G 2009 Nat. Phys. 6 40
[38] Kavner A and Jeanloz R 1998 J. App. Phys. 83 7553
[39] Boehler R 1986 Geophy. Res. Lett. 13 1153
[40] Deng L, Segale C, Fei Y and Shahar A 2013 Geophy. Res. Lett. 40 33
[41] Aquilanti G, Trapananti A, Karandikar A, Kantor I, Marini C, Mathon O, Pascarelli S and Boehler R 2015 Proc. Nati. Acad. Sci. USA 112 12042
[42] Lin J, Militzer B, Struzhkin V, Gregoryanz E, Hemely R and Mao H 2004 J. Chem. Phys. 121 8423
[1] Beam steering characteristics in high-power quantum-cascade lasers emitting at ∼ 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[2] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[3] A fast and precise three-dimensional measurement system based on multiple parallel line lasers
Yao Wang(王尧) and Bin Lin(林斌). Chin. Phys. B, 2021, 30(2): 024201.
[4] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[5] Dynamic measurement of beam divergence angle of different fields of view of scanning lidar
Qing-Yan Li(李青岩), Shi-Yu Yan(闫诗雨), Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2021, 30(2): 024205.
[6] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[7] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[8] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[9] Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay
Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙), Wei Feng(冯伟), Sheng-Peng Zhou(周胜鹏), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(1): 013201.
[10] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[11] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[12] Effects of WC-Co reinforced Ni-based alloy by laser melting deposition: Wear resistance and corrosion resistance
Zhao-Zhen Huang(黄昭祯), Zhi-Chen Zhang(张志臣), Fan-Liang Tantai(澹台凡亮), Hong-Fang Tian(田洪芳), Zhen-Jie Gu(顾振杰), Tao Xi(郗涛), Zhu Qian(钱铸), and Yan Fang(方艳). Chin. Phys. B, 2021, 30(1): 016802.
[13] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
[14] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[15] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
No Suggested Reading articles found!