Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 044202    DOI: 10.1088/1674-1056/25/4/044202

The effect of a permanent dipole moment on the polar molecule cavity quantum electrodynamics

Jing-Yun Zhao(赵晶云)1,2,3, Li-Guo Qin(秦立国)2, Xun-Ming Cai(蔡勋明)1, Qiang Lin(林强)1,4, Zhong-Yang Wang(王中阳)2
1 Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
3 School of Science, Zhejiang Sci.-Tech. University, Hangzhou 310018, China;
4 Center for Optics and Optoelectronics Research, Department of Applied Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
Abstract  A dressed-state perturbation theory beyond the rotating wave approximation (RWA) is presented to investigate the interaction between a two-level electronic transition of polar molecules and a quantized cavity field. Analytical expressions can be explicitly derived for both the ground-and excited-state-energy spectrums and wave functions of the system, where the contribution of permanent dipole moments (PDM) and the counter-rotating wave term (CRT) can be shown separately. The validity of these explicit results is discussed by comparison with the direct numerical simulation. Compared to the CRT coupling, PDM results in the coupling of more dressed states and the energy shift is proportional to the square of the normalized permanent dipole difference, and a greater Bloch-Siegert shift can be produced in the giant dipole molecule cavity QED. In addition, our method can also be extended to the solution of the two-level atom Rabi model Hamiltonian beyond the RWA.
Keywords:  dressed-state perturbation theory      permanent dipole moment      counter-rotating wave term      Bloch-Siegert shift  
Received:  15 September 2015      Revised:  02 December 2015      Published:  05 April 2016
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  02.30.Mv (Approximations and expansions)  
  33.80.-b (Photon interactions with molecules)  
Corresponding Authors:  Li-Guo Qin, Zhong-Yang Wang     E-mail:;

Cite this article: 

Jing-Yun Zhao(赵晶云), Li-Guo Qin(秦立国), Xun-Ming Cai(蔡勋明), Qiang Lin(林强), Zhong-Yang Wang(王中阳) The effect of a permanent dipole moment on the polar molecule cavity quantum electrodynamics 2016 Chin. Phys. B 25 044202

[1] Avdeenkov A V and Bohn J L 2003 Phys. Rev. Lett. 90 043006
[2] Kajita M 2009 New J. Phys. 11 055010
[3] Hudson E R, Christopher Ticknor, Brian C Sawyer, Craig A Taatjes, Lewandowski H J, Bochinski J R, Bohn J L and Ye Jun 2006 Phys. Rev. A 73 063404
[4] Tesch C M and Regina de Vivie-Riedle 2002 Phys. Rev. Lett. 89 157901
[5] Büchler H P, Micheli A and Zoller P 2007 Nat. Phys. 3 726
[6] Dagdigian P J, Howard W. Cruse and Richard N. Zare 1974 J. Chem. Phys. 60 2330
[7] Allouche A R, Wannous G and Aubert-Frécon M 1993 Chem. Phys. 170 11
[8] Leininger T and Gwang-Hi Jeung 1995 J. Chem. Phys. 103 3942
[9] Docken K K and Juergen Hinze 1972 J. Chem. Phys. 57 4936
[10] Nilar S H and Thakkar Ajit J 1993 Can. J. Chem. 71 1663
[11] Meath W J and Power E A 1984 J. Phys. B: At. Mol. Opt. Phys. 17 763
[12] Kmetic M A and Meath W J 1990 Phys. Rev. A 41 1556
[13] Brown A 2002 Phys. Rev. A 66 053404
[14] Yang W F, Song X H, Gong S Q, Cheng Y and Xu Z Z 2007 Phys. Rev. Lett. 99 133602
[15] Kmetic M A and Meath W J 1985 Phys. Lett. A 108 340
[16] Bavli R and Band Y B 1991 Phys. Rev. A 43 5044
[17] Calderón O G, Ramón Gutiérrez-Castrejón and José M. Guerra 1999 IEEE J. Quantum Electron. 35 47
[18] Berman P R 1994 Cavity Quantum Electrodynamics, Advances in Atomic, Molecular and Optical Physics (New York: Academic)
[19] Tuchman A K, Long R, Vrijsen G, Boudet J, Lee J and Kasevich M A 2006 Phys. Rev. A 74 053821
[20] Pellizzari T, Gardiner S A, Cirac J I and Zoller P 1995 Phys. Rev. Lett. 75 3788
[21] Leibrandt D R, Jaroslaw Labaziewicz, Vladan Vuletic and Isaac L Chuang 2009 Phys. Rev. Lett. 103 103001
[22] Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132
[23] Reithmaier J P, Sęk G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197
[24] Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
[25] Tischler J R, Scott Bradley M, Vladimir Bulovic, Jung Hoon Song and Arto Nurmikko 2005 Phys. Rev. Lett. 95 036401
[26] Morigi G, Pepijn W H Pinkse, Markus Kowalewski and Regina de Vivie-Riedle 2007 Phys. Rev. Lett. 99 073001
[27] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[28] Zhang Y W, Chen G, Yu L X, Liang Q F, Liang J Q and Jia S T 2011 Phys. Rev. A 83 065802
[29] Zhang Y Y, Chen Q H and Zhu S Y 2013 Chin. Phys. Lett. 30 114203
[30] Wang Z H and Zhou D L 2013 Chin. Phys. B 22 114205
[31] He S, Zhang Y Y, Chen Q H, Ren X Z, Liu T and Wang K L 2013 Chin. Phys. B 22 064205
[32] Hausinger J and Milena Grifoni 2008 New J. Phys. 10 115015.
[33] Yu L X, Zhu S Q, Liang Q F, Chen G and Jia S T 2012 Phys. Rev. A 86 015803
[34] Hattori T and Takayoshi Kobayashi 1987 Phys. Rev. A 35 2733
[35] Jaynes E T and Cummings F W 1963 IEEE Proc. 51 90
[36] Beaudoin F, Jay M Gambetta and Blais A 2011 Phys. Rev. A 84 043832
[37] Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003
[38] Cheng T W and Alex Brown 2004 Phys. Rev. A 70 063411
[39] Calderón Oscar G, Sonia Melle and Isabel Gonzalo 2002 Phys. Rev. A 65 023811
[40] Larson J 2007 Phys. Scr. 76 146
[41] Ashhab S and Franco Nori 2010 Phys. Rev. A 81 042311
[42] Emary C and Tobias Brandes 2003 Phys. Rev. Lett. 90 044101
[43] Emary C and Tobias Brandes 2003 Phys. Rev. E 67 066203
[44] Simone De Liberato, Cristiano Ciuti and Iacopo Carusotto 2007 Phys. Rev. Lett. 98 103602
[45] De Liberato S, Gerace D, Carusotto I and Ciuti C 2009 Phys. Rev. A 80 053810
[1] The asymmetry of the Autler-Townes doublet in a three-level system
Zhang Lian-Shui, Feng Xiao-Min, Li Xiao-Wei, Han Li, Fu Guang-Sheng. Chin. Phys. B, 2004, 13(3): 348-352.
No Suggested Reading articles found!