Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 120302    DOI: 10.1088/1674-1056/25/12/120302
GENERAL Prev   Next  

Quantum process discrimination with information from environment

Yuan-Mei Wang(王元美)1, Jun-Gang Li(李军刚)1, Jian Zou(邹健)1, Bao-Ming Xu(徐宝明)2
1. School of Physics, Beijing Institute of Technology, Beijing 100081, China;
2. School of Physics, Qufu Normal University, Qufu 273165, China

In quantum metrology we usually extract information from the reduced probe system but ignore the information lost inevitably into the environment. However, K. Mølmer[Phys. Rev. Lett. 114, 040401 (2015)] showed that the information lost into the environment has an important effect on improving the successful probability of quantum process discrimination. Here we reconsider the model of a driven atom coupled to an environment and distinguish which of two candidate Hamiltonians governs the dynamics of the whole system. We mainly discuss two measurement methods, one of which obtains only the information from the reduced atom state and the other obtains the information from both the atom and its environment. Interestingly, for the two methods the optimal initial states of the atom, used to improve the successful probability of the process discrimination, are different. By comparing the two methods we find that the partial information from the environment is very useful for the discriminations.

Keywords:  quantum process discrimination      information in the environment      overlap     
Received:  14 May 2016      Published:  05 December 2016
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  02.50.Tt (Inference methods)  
  03.67.-a (Quantum information)  
  42.50.Dv (Quantum state engineering and measurements)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274043, 11375025, and 11005008).

Corresponding Authors:  Jun-Gang Li     E-mail:

Cite this article: 

Yuan-Mei Wang(王元美), Jun-Gang Li(李军刚), Jian Zou(邹健), Bao-Ming Xu(徐宝明) Quantum process discrimination with information from environment 2016 Chin. Phys. B 25 120302

[1] Helstrom C W 1976 Quantum Detection and Estimation Theory, Mathematics in Science and Engineering, Vol. 123 (New York:Academic Press) pp. 40-42
[2] Fox A M 2006 Quantum Optics:An introduction (Oxford:Oxford University Press) p. 35
[3] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press) p. 55
[4] Susskind L and Friedman A 2015 Quantum Mechanics:The Theoretical Minimum (Penguin Books, UK) p. 72
[5] Barnett S M 2009 Quantum Information (New York:Oxford University Press) p. 32
[6] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (New York:Cambridge University Press) p. 409
[7] Scarani V, Iblisdir S, Gisin N and Acín A 2005 Rev. Mod. Phys. 77 1225
[8] Chefles A and Barnett S M 1998 J. Phys. A:Math. Gen. 31 10097
[9] Sekatski P, Skotiniotis M and Dür W 2015 Phys. Rev. A 92 022355
[10] Barnett S M and Croke S 2009 Adv. Opt. Photon. 1 238
[11] Bae J and Kwek L C 2015 J. Phys. A:Math. Theor. 48 083001
[12] Ivanovic I D 1987 Phys. Lett. A 123 257
[13] Peres A 1988 Phys. Lett. A 128 19
[14] Chen L Y, Wang H F, Zhang S and Yeon K H 2013 Chin. Phys. B 22 050306
[15] Chen L B, Jin R B and Lu H 2008 Chin. Phys. B 17 778
[16] Acín A 2001 Phys. Rev. Lett. 87 177901
[17] D'Ariano G M, Lo Presti P and Paris M G A 2001 Phys. Rev. Lett. 87 270404
[18] Sacchi M F 2005 Phys. Rev. A 71 062340
[19] Zhou X F, Zhang Y S and Guo G C 2007 Phys. Rev. Lett. 99 170401
[20] Chiribella G, D'Ariano G M and Perinotti P 2008 Phys. Rev. Lett. 101 180501
[21] Duan R Y, Feng Y and Ying M S 2009 Phys. Rev. Lett. 103 210501
[22] Laing A, Rudolph T and O'Brien J L 2009 Phys. Rev. Lett. 102 160502
[23] Orieux A, Sansoni L, Persechino M, Mataloni P, Rossi M and Macchiavello C 2013 Phys. Rev. Lett. 111 220501
[24] Molmer K 2015 Phys. Rev. Lett. 114 040401
[25] Breuer H P and Petruccione F 2002 The Theory of Open Quantum System (New York:Oxford University Press)
[26] Wiseman H M and Milburn G J 2010 Quantum Measurement and Control (Cambridge:Cambridge University Press)
[27] Carmichael H 1993 An Open System Approach to Quantum Optics, Lecture Notes in Physics (Berlin/Heidelberg:Springer-Verlag)
[28] Plenio M B and Huelga S F 2016 Phys. Rev. A 93 032123
[29] Catalin Catana and Gutţă M 2014 Phys. Rev. A 90 012330
[30] Preskill J 1998 Lecture Notes for Physics 229:Quantum Information and Computation (California Institute of Technology)
[31] Gutţă M 2011 Phys. Rev. A 83 062324
[32] Gammelmark S and Molmer K 2014 Phys. Rev. Lett. 112 170401
[33] Catana C, Bouten L and Guţă M 2015 J. Phys. A:Math. Theor. 48 365301
[34] Fuchs C A 1996 "Distinguishability and Accessible Information in quantum Theory", Ph. D Thesis (The University of New Mexico, Aibuquweque, NM, 1996), arXiv:9601020
[1] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
[2] Numerical analysis of a dual-pass pumping laser with weak absorption
Guang-Ju Zhang(张光举), Ma-Li Gong(巩马理), Wen-Qi Zhang(张文启). Chin. Phys. B, 2017, 26(5): 050203.
[3] A local fuzzy method based on “p-strong” community for detecting communities in networks
Yi Shen(沈毅), Gang Ren(任刚), Yang Liu(刘洋), Jia-Li Xu(徐家丽). Chin. Phys. B, 2016, 25(6): 068901.
[4] Detecting overlapping communities in networks via dominant label propagation
Sun He-Li, Huang Jian-Bin, Tian Yong-Qiang, Song Qin-Bao, Liu Huai-Liang. Chin. Phys. B, 2015, 24(1): 018703.
[5] Effect of the nonlinearity of CCD in Fourier transform profilometry on spectrum overlapping and measurement accuracy
Qiao Nao-Sheng, Zou Bei-Ji. Chin. Phys. B, 2013, 22(1): 014203.
[6] One-range addition theorems for generalized integer and noninteger μ Coulomb, and exponential type correlated interaction potentials with hyperbolic cosine in position, momentum, and four-dimensional spaces
I. I. Guseinov. Chin. Phys. B, 2012, 21(6): 063101.
[7] Nonequilibrium dynamics in two-dimensional Ising spin glass
Zhang Kai-Cheng, Zhu Yan. Chin. Phys. B, 2011, 20(4): 047501.
[8] Method for fitting crystal field parameters and the energy level fitting for Yb3+ in crystal Sc2O3
Zhang Qing-Li, Ning Kai-Jie, Xiao Jin, Ding Li-Hua, Zhou Wen-Long, Liu Wen-Peng, Yin Shao-Tang, Jiang Hai-He. Chin. Phys. B, 2010, 19(8): 087501.
[9] Numerical exploration of coherent excitation in three-level ladder systems
Li Xiao-Hong, Zhang Xian-Zhou, Yang Xiang-Dong. Chin. Phys. B, 2007, 16(7): 1947-1951.
[10] Topological susceptibility from overlap fermion
Ying He-Ping, Zhang Jian-Bo. Chin. Phys. B, 2003, 12(12): 1374-1377.
No Suggested Reading articles found!